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This paper describes the OTF software system developed at the University of California, San 
Francisco Computer Graphics Laboratory for creating powerful C++ classes that facilitate 
rapid biomolecular application development and its application to collagen modeling. C++ 
class libraries for accessing and manipulating data from standard scientific data sources can be 
generated from the program genlib and its class library toolkit Molecule, thereby making this 
functionality much more accessible to application tool developers. The application of the OTF 
in the development of the program gencollagen, which generates model collagen structures, is 
described.  The source code for the OTF is freely available at http://www.cgl.ucsf.edu/otf/ to 
interested application developers. 

1   Introduction

1.1 General Overview: The Problem

A researcher developing a molecular analysis software tool often needs to provide 
many functions besides the analysis itself, including access to standard databases, 
representation of external data in an internally usable form, basic bookkeepping 
functionality such as atom deletion or bond list traversal, and convenient 
interchange of data with other tools. These functions, while necessary and desirable, 
are really not of main interest to the researcher, who would generally prefer to 
simply do the analysis of the data than write these associated support functions. 
This frequently results in the creation of molecular analysis tools with minimal 
support functions that utilize their own custom data formats or some subset of a stan-
dard format. They frequently cannot handle data that uses the full range of a 
standard format and cannot easily interchange data with other tools. In addition, 
some time is typically spend coding and debugging what support functions do exist, 
further slowing down tool development. The end result for the tool user is an 
environment where tool cooperation is very difficult to achieve, and where fewer 
tools exist due to the difficulty of developing them. 
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1.2 A Solution: The Object Technology Framework (OTF)

The OTF software system was developed to address these problems. The 
library classes generated by the OTF provide the functionality needed to access 
standard data sources and to carry out operations typically performed on molecular 
data. The classes accelerate application development and enhance interoperability.

The OTF organizes an application’s molecular data into natural 
abstractions such as atoms, residues, and molecules, encapsulated as C++ classes. 
The application developer specifies what OTF-supported functionality is required 
and the OTF automatically generates classes that incorporate the designated 
features. No unwanted functionality is included.

The application developer will typically also want to extend the classes to 
support application-specific data and functionality. Such extensions are specified in 
the same format that OTF features are specified (C++ code segments embedded in 
identifying tagged delimiters). Consequently, if the programmer creates extension 
functionality that is of general utility, it is easy to contribute the functionality back 
into the OTF as a new feature for use with future applications.

There are standard C++ mechanisms for providing mix-in functionality, 
customizability, and re-usability as described above. These mechanisms for the 
most part work well in the context of single application or closely-related suite of 
applications,.  For example, Democritos[13], PDBlib[14], and BTL[15] are 
biomolecular C++ class libraries that offer a broad spectrum of functionality.  An 
application can use one of these libraries and customize and extend the library’s 
classes for application needs.  However, due to shortcomings with standard C++ 
extension mechanisms (discussed in Appendix 1), it is difficult or impossible to re-
integrate any extended functionality back into the library for use with other 
applications.  The OTF allows easy re-integration of useful functionality 

The development of the OTF has been motivated by the realization that 
biomolecular application developers were constantly re-inventing functionality 
present in other applications and that if such functions could be offered as easily re-
usable components that could be simply integrated into custom applications, much 
time and effort would be saved. The functionality would be tested, complete, and 
consistent from application to application. The shortcomings in C++ library re-
usability stood in the way of these desirable goals, and hence, the OTF was 
developed to offer a way to make functionality generally re-usable.

1.3 Applications

The OTF has been used to develop several applications both locally and 
abroad.  Locally, applications developed include: (1) autoindex, a tool for 
generating an HTML index of a directory; (2) gneighbor, a tool for computing and 
printing the Gaussian neighborhood values for protein residues; (3) phipsi, a tool for 
computing and printing protein φ, ψ, ω, χ angles and (4) gencollagen, a tool for 
generating model segments of collagen.  In this paper, we will describe the details 
of the gencollagen application.

2. Design Concepts

The major classes that the OTF currently offers built-in support for are: 



Atom, Bond, Residue, and Molecule. The functionality that the OTF can provide 
with the above classes is separated into coherent groups referred to as toolkits. The 
functionality each toolkit offers is further divided into one or more components that 
can be used on an individual basis. Application developers using the OTF run a 
program called genlib to compose exactly those components they want in their 
application into the above classes.  An important difference between OTF 
components and the standard C++ inheritance mechanism is that components may 
cross class boundaries.  For example, the CoordSet component, used for managing 
multiple atomic coordinate sets, augments the interface of both the Molecule and 
Atom classes.

Each component has an interface and one or more implementations. The 
interface specifies what functionality the component offers to the application 
(classes, member functions, etc.) and each implementation contains all the code 
necessary to completely implement the interface. The reason that some components 
offer multiple implementations is so that if there is an important design trade-off in 
the implementation ( e.g., speed vs. memory use) then implementations embodying 
differing selections in the trade-off can be provided. Application developers select a 
particular implementation when selecting a component for inclusion in their 
application. The separation between  interface and implementation enables the 
developer to create an application quickly using existing code and to optimize 
performance later by replacing bottleneck implementations.

In order to customize the generated classes for the application’s specific 
needs, the developer writes C++ code that will be composed by genlib into the class 
at the same time as the selected components. The C++ code is written in the same 
fashion that the standard OTF components are written, which is regular C++ code 
embedded in simple delimiters that genlib can recognize. Consequently, if the 
customizations are of some general utility, they can be organized into components 
and toolkits which can be easily re-used in future applications.

The classes generated by genlib are designed to be used as is and should 
not be used as base classes. This is because the generated classes have containers 
referring to other generated classes (e.g., the Molecule class has containers of both 
Atoms and Bonds). In order for the containers to refer to subclasses, the base classes 
would need to be template classes. Template base classes are undesirable for 
reasons discussed in Appendix 1.  The genlib mechanism is provided so that the 
classes’ functionality can be extended while avoiding subclassing.

2.2 Molecule Class Library Toolkit

The Molecule class library toolkit offers abstractions of molecular data as 
atoms, residues, and molecules via C++ classes. These classes can be customized 
and extended by the application developer using genlib described in section 2.3. 
The molecular properties handled automatically by these base classes are:

Atom
• name
• atomic number
• bonding environment, e.g., planar vs. tetrahedral
• index into coordinate set

Residue
• type
• sequence number

Molecule
• coordinate sets



• comments

Atomic coordinates are not directly associated with atoms, but instead mole-
cules can have zero or more coordinate sets, which enumerate alternative 
conformations for the atoms. A molecule may have different conformations when 
bound verses unbound, or, multiple conformations over the course of a computa-
tional simulation. Multiple coordinate sets are essential for molecular dynamics 
applications and magnetic resonance spectroscopy analysis. The concept of a 
“current” coordinate set is maintained, and it is simple to retrieve an atom’s coordi-
nates from the current set.

The Molecule class library toolkit includes a variety of miscellaneous support 
classes, including MolComment for annotating a molecule, and utility functions, 
such as tmplAtomicNumber for converting atomic symbols to atomic numbers. An 
important “miscellaneous” included functionality is the conversion of non-standard 
atom names to IUPAC-IUB standard nomenclature [3].

A very important set of support classes are those that provide for reading from 
and writing to standard data sources. Currently, a class for Protein Data Bank 
format [4-6] is provided.

2.3 Genlib

A utility called genlib is provided for assembling the Molecule toolkit compo-
nents into custom C++ classes usable by an application. Genlib takes a small 
configuration file as input and assembles desired components into a compiled class 
library. The configuration file guides application-specific class customizations:  
instance variables can be added to handle additional molecular properties, new 
member functions can be introduced to provide needed functionality, and C++ 
constructor and destructor code can be added to handle necessary set up and 
disposal operations. Unneeded components can be omitted. In addition, the 
configuration file allows the developer to specify, on a case by case basis, how bulk 
data in a class should be organized. For example, the application designer can 
specify that residues in a molecule should be organized using a container class with 
array-like semantics, rather than the default container class that uses ordered set 
semantics.

Genlib’s code assembly capabilities greatly speed application development by 
reducing coding time and eliminating typographical errors as well as conceptual 
errors related to class integration. Genlib also provides a consistent organization 
across the assembled classes.

3. Example Application: gencollagen

We developed the program gencollagen in order to model collagen for structural 
studies related to the disease Osteogenesis imperfecta, and to model novel collagen-
like biomaterials.  Gencollagen generates a Protein Data Bank (PDB) file [4-6] 
containing the idealized atomic coordinates for a triple-helical fibril collagen 
fragment of twelve amino acids or more, given the protein sequence and several 
additional input parameters. The program’s amino acid internal coordinates were 
obtained using AMBER-94 [8] optimized geometries. The default values for the 
helical and symmetry parameters are from Miller et al. [9].  Gencollagen constructs 
molecules in the following manner:  (1) read the amino acid data file, (2) read the 
input file,  (3) create the backbone atoms for a single chain [9, 10], (4) compute the 
triple-helical axis based on the single chain [10], (5) create the backbone atoms for 
the other two chains from symmetry operations, (6) order the amino acids for 
sidechain addition (C-terminus → N-terminus, N-terminus → C-terminus or 



completely random), (7) add sidechain atoms using a rotamer library (Dunbrack and 
Karplus [11], Ponder and Richards [12] or random) and (8) write the output PDB 
file.

The coding of gencollagen was facilitated by the use of the OTF as illustrated by 
the following statistics:

(1) Total lines of user-written code: 2000
(2) Lines of code for high-level control logic: 300
(3) Lines of code related to computing the geometry: 600
(4) Lines of code for managing AMBER-94 geometries: 500
(5) Lines of code for managing gencollagen parameters: 500
(6) Lines of code for miscellaneous functionality 100 
(7) Lines  in gencollagen configuration file1: 31

Lines 4 and 5 cover application-specific data management (not assisted by the 
OTF).  Of the remaining code, approximately 90% (lines 2 and 3) was written 
specifically for generating collagen models (e.g., computing helical symmetry, 
adding sidechain atoms, duplicating chains).  Only Line 7 and parts of Line 6 were 
devoted to managing standard molecular data; the OTF handled the bulk of such 
management (e.g., data organization into molecules, residues, and atoms; creation 
of the output PDB file).  Considering that 1000 lines of code were necessary for 
management of application-specific data, clearly much coding effort was saved by 
using the OTF for standard molecular data functionality.  

For smaller analysis programs that require only molecular data, the benefits of the 
OTF are even more evident.  For example, phipsi (program for computing protein 
bond angles) required 197 lines of C++ code and 33 lines of genlib configuration; 
pdbiv (program for converting a PDB file into an Open Inventor graphics file) 
required 177 lines of code and 2 lines of genlib configuration; and gneighbor 
(program for computing the Gaussian neighborhood of residues) required 172 lines 
of code and 30 lines of genlib configuration.  The ability to quickly build molecular 
analysis tools is an important use of the OTF.
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Appendix 1:  Inadequacies of C++ for Generic Class Library Development

This appendix delves into the minutiae of why C++’s normal language 
facilities are inadequate for general-purpose class library development, which 
necessitated the development of genlib.  This section will only be understandable to 
those already thoroughly familar with C++’s language facilities.

Trying to provide the OTF functionality in a set of simple base classes has 
two major problems.  One problem is that the Molecule base class wants to contain 
instances of the class derived from the Bond base class, for example, but only 
knows about the base class.  This means that Molecule member functions returning 
"Bonds" can only return the Bond base class instead of the derived class. This leads 

1Shown in full in Appendix 2.



to tedious error-prone casts from the base class to the derived class throughout the 
application.  The other problem is that these base classes cannot create instances of 
the derived classes. This is crucial when attempting to read in a PDB file, for 
example, where Atoms, Bonds, etc. need to be created. 

Using template base classes would solve the problems just described.  
However, it suffers from three serious deficiencies that genlib alleviates:

• The template statement amplifies the broken encapsulation of the 
friend statement.

• True modularity cannot be achieved. 

• The resulting class library is daunting in its complexity, both to the library 
designer/implementer and to the application-programmer end user. 

Template/friend Interaction

The first problem is that if a template base class provided by a class library 
needs to declare friend classes or functions, then encapsulation breaks badly. A 
friend declaration normally breaks encapsulation to a limited extent in that the class 
given friendship can meddle with the private sections of the granting class. With 
standard friendship, the addition of new (but unrelated) functionality to the friend 
class requires no change to the friendship-granting class. But if the classes are 
template classes, this is no longer the case.

This is probably most easily understood with an example. Assume that 
MoleculeBase and AtomBase are the template base classes for the application’s 
derived classes Molecule and Atom, respectively. Given that class MoleculeBase 
needs to contain Atoms, then Atom must be on MoleculeBase’s template statement 
argument list:

template <class Atom> class MoleculeBase { ... 

If class AtomBase needs to offer an access function returning type 
Molecule, then Molecule must be on AtomBase’s template statement argument list:

template <class Molecule> class AtomBase { ... 

This is all fine unless MoleculeBase needs to offer friendship to AtomBase 
or to AtomBase member functions. In order to make the friendship declaration, the 
template statement arguments for AtomBase need to be known to MoleculeBase. 
The only way to supply them is via MoleculeBase’s template statement argument 
list. This means that Molecule needs to be on MoleculeBase’s template statement 
argument list:

template <class Atom, class Molecule> class MoleculeBase { 
friend class AtomBase<Molecule>;
...

It also means that any future additions to AtomBase that affect 
AtomBase’s template statement (for example, support for Rings) also have to be 
added to MoleculeBase’s template statement whether or not those changes are 
relevant to MoleculeBase, i.e. changes to AtomBase are no longer encapsulated. 



The upshot is that every template class may wind up needing every other 
template class on its argument list. This destroys the advantage of encapsulation 
since adding a new class to the library, such as Ring, requires modification of every 
other class in the library, not just those classes that use the new class. 

Since encapsulation is broken, the library is no longer extensible; two 
different developers can no longer extend the capabilities of the library in two 
different (but separate and distinct) ways since the changes propagate throughout 
the entire library and thereby make the libraries incompatible with one another. This 
means that re-use of functionality is destroyed. 

True Modularity Cannot Be Achieved

Modularity is an important feature of a class library. A modular class 
library supports the following features:

    
1.  A library class can extend the functionality of another simpler library 

class, and an application can use either the extended class or the simpler class, 
according to its needs. 

2.  Two different library classes can extend the functionality of the same 
simpler library class in distinct ways, and an application can make use of the 
simpler class, either extended class, or both extended classes. 

3.  The same functionality may be provided by multiple library classes 
using different implementations. The application program should be able to choose 
the appropriate implementation freely. 

4.  If a library class extends the functionality of a simpler library class, it 
should be able to extend any library class that provides the simpler class’ 
functionality. 

    
It is impossible to support all the above in a C++ class library in a general 

way.     
Point #4 implies that an extending class must inherit from the simpler class 

it is extending, since the extending class cannot know all the functionality provided 
by the simpler class (it can only know the subset that it needs) and that therefore it 
cannot use a mechanism such as having the simpler class as member data and 
providing wrapper calls to the simpler class functionality.

Since the functionality extension mechanism must be inheritance, points 
#3 and #4 both imply that the simpler class must be provided as a template 
argument to the extending class, since the extending class must be able to extend 
any class providing the necessary base functionality.

This ultimately leads to an unresolvable conflict due to the way 
constructors work. The extending class cannot know what specific base class it is 
extending. It may be extending a minimal base class that provides only the 
functionality it needs, or it may be extending a more extensive base class that 
requires additional constructor arguments. There is no way that the extending 
class, in its constructor, can invoke the base class constructor with the proper 
arguments.     

Genlib specifically supports all four of the above requirements for a 
modular class library. 

Daunting Complexity

It has been our experience that the use of template base classes to construct 
a class library produces a library that is so complex that it is hard for the application 



developer to use and extremely difficult for the library developer to extend and 
maintain.

Template classes in and of themselves are difficult to use and maintain and 
also produce lengthy compile times, but, in addition, in order to support true 
modularity there are additional complexities that have to be introduced:  virtual base 
classes and templated inheritance lists.

Virtual Base Classes

Virtual base classes are used when two or more classes are derived from 
the same base class, and those derived classes are to be used together as base classes 
(via multiple inheritance) for a further derived class. In order to avoid having 
multiple instances of the "grandparent" base class, the parent classes have to be 
declared virtual on the inheritance list. 

In a modular class library essentially every class will use virtual 
inheritance because inheritance lists will be supplied as template arguments (see 
next section) and therefore it will impossible to know beforehand if parent classes 
share a common ancestor.

The ugly part about using virtual base classes is that C++ mandates that all 
such classes’ constructors must be invoked from the constructor for the "most 
derived" class (i.e., the final application class), rather than from the constructor for 
the class that derives directly from the virtual base class.  Since every class in the 
library needs to be virtual for reasons discussed above, this means that an 
application class has to invoke the constructor for every class it inherits directly or 
indirectly from. This pushes internals of the class library (how a class wants to 
invoke the constructor of its parent class) into the arena of the application 
programmer.  This forces the application programmer to learn unnecessary details 
of the internals of the library — and those details may be complex, e.g., a library 
class may want to invoke its parent’s class constructor in different ways depending 
on which of its own constructors was used or depending on what argument values 
were supplied to its own constructor.

Templatized Inheritance Lists

A class library may support several different implementations of the same 
class functionality.  This may be because of performance tradeoffs in various 
application environments, or because some core functionality offered by one class is 
also offered by other classes but extended in various ways. This implies that a 
library class that needs to inherit some particular functionality may not know what 
base class it is most advantageous to inherit from, given the final application’s 
needs. The remedy to this is to have the inheritance list supplied as template 
arguments.

There are problems with using template arguments, though. For example if 
functionality X is provided by class A, and functionality Y is provided by class B, 
and class C provides both X and Y, then if a class needs to inherit functionalities X 
and Y it needs two template arguments if it uses classes A and B, but only one if it 
uses class C. The only workaround for this is to provide a wrapper class D that 
combines A and B so that inheritance would come from either C or D.  It would be 
nice if you could simply inherit from either {A and B} or {C twice} (since C is a 
virtual base class, see above), but unfortunately the latter is illegal.

This leaves using a wrapper class as the only workaround.  Clearly, 
scalability is a major problem of this workaround for a class library of any size. For 



example, if there are three classes (A1, A2, A3) providing functionality X and two 
classes (B1, B2) providing functionality Y, then there has to be six wrapper classes 
for the various possible combinations. Of course, the wrapper class itself could be a 
template class, but that way lies madness.

Appendix 2:  Genlib input file for gencollagen

The genlib input file for the program gencollagen is presented below in its 
entirety.  A discussion of the file’s contents follows the file listing.  The numbers 
preceding each line are not part of the file and are for reference during the 
discussion section.

1 implementation Molecule/default;
2 implementation Molecule/PDBio_default;

3 includefile <stdio.h> in Atom;

4 members Atom {
5         bool    loaded_;
6 public:
7         bool    isLoaded() const { return loaded_; }
8         void    setCoord(float x, float y, float z);
9         void    setCoord(const MolPos &pos);
10         void    dump(FILE *fp) const;
11 private:
12         void    setLoaded(bool flag) { loaded_ = flag; }
13 }

14 members Residue {
15         Residue *prev_;
16         float   phi_, psi_;
17 public:
18         Residue *prev() const { return prev_; }
19         float   phi() const { return phi_; }
20         float   psi() const { return psi_; }
21         void    setPrev(Residue *prev) { prev_ = prev; }
22         void    setPhi(float angle) { phi_ = angle; }
23         void    setPsi(float angle) { psi_ = angle; }
24 }

25 constructor Atom {
26         loaded_ = false;
27 }

28 constructor Residue {
29         prev_ = NULL;



30         phi_ = psi_ = 0;
31 }

Line 1 causes genlib to include the default implementations of the classes 
Molecule, Residue, Atom, Bond, Coord, and CoordSet from the Molecule toolkit.  
Line 2 includes the default implementation of the PDBio class, which can be used 
to read PDB files into (or write PDB files from) the aforementioned classes.

Line 3 causes <stdio.h> to be #included in the Atom class interface file 
(Atom.h).

Lines 4 through 13 specify additions to the Atom class interface.  Line 12 
adds a private instance variable.  Lines 7 through 10 specify four additional public 
member functions.  Line 12 adds a private member function.  Note that all the added 
member functions are inline except for the one on line 10.  That function is only 
three lines long and could have been provided inline, but the gencollagen author 
decided to provide it in a separate C++ source file.  Alternatively, the entire non-
inline function could have been provided in the genlib input file, embedded in a 
"code Atom {...}" construct.

Lines 14 through 24 add instance variables and member functions to class 
Residue in the same manner that lines 4 through 13 did so for class Atom.

Lines 25 through 27 add code to the Atom class constructor.  Lines 28 
through 31 do the same for the Residue class constructor.

This gencollagen configuration file, when processed using genlib, results 
in approximately 1500 lines of C++ code.
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