
BIDIRECTIONAL STICKER SYSTEMS

Rudolf FREUND
Department of Computer Science, Vienna University of Technology

Karlsplatz 13, A-1040 Wien, Austria

email: rudi@logic.at

Gheorghe P�AUN
Institute of Mathematics of the Romanian Academy

PO Box 1 { 764, 70700 Bucure�sti, Romania

email: gpaun@imar.ro

Grzegorz ROZENBERG
Department of Computer Science, Leiden University

PO Box 9512, 2300 RA Leiden, The Netherlands

email: rozenber@wi.leidenuniv.nl

Arto SALOMAA
Academy of Finland and Turku University

Department of Mathematics, 20500 Turku, Finland

email: asalomaa@sara.utu.�

We introduce two-sided sticker systems, the two-sided variant of a computability

model introduced5 as an abstractionof Adleman's style of DNA computing1 and of

the matching of the so-called Watson-Crick complements. Several types of sticker

systems are shown to have the same power as regular grammars, one variant is

found to represent the linear languages, and another one is proved to be able to

represent any recursively enumerable language. From this result we infer that

any recursively enumerable language can be represented as the projection of the

intersection of two minimal linear languages.

1 Introduction

Sticker systems 5 are language generating devices based on the sticker oper-

ation, which, in turn, is a model of the techniques used by L. Adleman in

his successful experiment of deciding the existence of a Hamiltonian path in a

graph by using DNA 1. We recall some biological details in order to see the

roots of the models of sticker systems 5 and of bidirectional sticker systems in-

troduced in this paper. DNA sequences are double stranded (helicoidal) struc-

tures composed of four nucleotides, A (adenine), C (cytosine), G (guanine),

and T (thymine), paired A{T, C{G according to the so-called Watson-Crick

complements. If we have a single stranded sequence of A, C, G, T nucleotides,

together with a single stranded sequence composed of the complementary nu-

cleotides, the two sequences will be \glued" together (by hydrogen bonds),

forming a double stranded DNA sequence. This matching of complementary

nucleotides now is the constraint which has to be ful�lled when we prolong to

the left and to the right a sequence of (single or double) symbols by using given

single stranded strings or even more complex dominoes with sticky ends, gluing

these ends together with the sticky ends of the current sequence according to

a complementarity relation.

A formalmodel for this sticker operation is de�ned in the following section.

According to this sticker operation a generative mechanism can be de�ned: We

start from a given set of (incomplete) double-stranded sequences (axioms), plus

a set of pairs of double-stranded complementary sequences allowing us to pro-

long the initial sequences to the left and to the right, respectively. Iterating

these prolongations we get \computations" of possibly arbitrary length. A cod-

i�cation procedure (a projection) �nally gives \meaning" to blocks of symbols,

in this way yielding the \decoded" language.

The generative power of several variants of such mechanisms is investi-

gated in the following. Several types of bidirectional sticker systems are shown

to represent regular languages and one variant is found to represent the linear

languages. Another variant is proved to be able to represent any recursively

enumerable language, which reminds the results obtained in a series of pa-

pers 2;4;6;7;8 about the possibility of designing universal (and programmable)

DNA \computers" based on the operation of splicing 3, introduced as a model

of the recombinant behavior of DNA under the in
uence of restriction enzymes

and ligases. Moreover, this universality result also allows us to establish an

optimal representation result for recursively enumerable languages: Any re-

cursively enumerable language L; L � ��; can be written as L = h (L1 \ L2) ;

where L1 and L2; L1; L2 � ��

1; are minimal linear languages (i.e. they are

generated by a linear grammar with only one non-terminal symbol) and h is a

projection from �1 on �:

2 Prerequisites

We �rst specify a few notions and notations from formal language theory 9.

For an alphabet V , by V � we denote the free monoid generated by V under

the operation of concatenation; the empty string is denoted by �: Moreover,

we denote V + = V � n f�g ; jxj is the length of the string x: By REG; LIN;

and RE we denote the families of regular, linear, and recursively enumerable

languages, respectively.

Take an alphabet V (a �nite set of abstract symbols) endowed with a

relation � (of complementarity), � � V � V ; moreover, consider a special

symbol, #, not in V , denoting an empty space (the blank symbol). Using the

elements of V [f#g we construct the following sets of composite symbols:�
V
V

�
�
=
��

a
b

�
j a; b 2 V; (a; b) 2 �

	
;�

#

V

�
=
n�

#

a

�
j a 2 V

o
;
�
V

#

�
=
n�

a

#

�
j a 2 V

o
:

Moreover, we denote W�(V) = W s
� (V) [S (V) (the set of well-formed

sequences or dominoes) and W s
� (V) = S (V)

�
V
V

�+
�
S (V) (the set of well-started

sequences or dominoes), where S(V) =
�
#

V

�
�

[

�
V

#

�
�

: Stated otherwise, the

elements of W s
� (V) in the middle have pairs of symbols in V , as selected by

the complementarity relation, and at the left and at the right they end either

by pairs
�
#

a

�
or by pairs

�
b

#

�
, for a; b 2 V (the symbols

�
#

a

�
;
�
b

#

�
are not

mixed). The elements of S (V) at the left and at the right end of a domino in

W s
� (V) are called sticky ends; if such an element is �; then this end is called

a blunt end.

The sticker operation, denoted by �, is a partially de�ned mapping from

W� (V) �W� (V) to W� (V); for x; y; z 2 W� (V), we write � (x; y) = z if and

only if one of the following cases holds:

1. x = w
�
a1
#

�
: : :
�
ar
#

��
ar+1
#

�
: : :
�
ar+p
#

�
; w 2 S (V)

�
V

V

�+
�
;

y =
�
#

c1

�
: : :
�
#

cr

�
; z = w

�
a1
c1

�
: : :
�
ar
cr

��
ar+1
#

�
: : :
�
ar+p
#

�
; or

y =
�
ar+p
#

�
: : :
�
ar+1
#

��
ar
#

�
: : :
�
a1
#

�
w; w 2

�
V

V

�+
�
S (V) ;

x =
�
#

cr

�
: : :
�
#

c1

�
; z =

�
ar+p
#

�
: : :
�
ar+1
#

��
ar
cr

�
: : :
�
a1
c1

�
w; for r � 0;

p � 0; aj 2 V; 1 � j � r + p; ci 2 V; 1 � i � r; (ai; ci) 2 �; 1 � i � r;

2. x = w
�
#

c1

�
: : :
�
#

cr

��
#

cr+1

�
: : :
�

#

cr+p

�
; w 2 S (V)

�
V

V

�+
�
;

y =
�
a1
#

�
: : :
�
ar
#

�
; z = w

�
a1
c1

�
: : :
�
ar
cr

��
#

cr+1

�
: : :
�

#

cr+p

�
; or

y =
�

#

cr+p

�
: : :
�

#

cr+1

��
#

cr

�
: : :
�
#

c1

�
w; w 2

�
V

V

�+
�
S (V) ;

x =
�
ar
#

�
: : :
�
a1
#

�
; z =

�
#

cr+p

�
: : :
�

#

cr+1

��
ar
cr

�
: : :
�
a1
c1

�
w; for r � 0;

p � 0; ai 2 V; 1 � i � r; cj 2 V; 1 � j � r + p; (ai; ci) 2 �; 1 � i � r;

3. x = w
�
a1
#

�
: : :
�
ar
#

�
; w 2 S (V)

�
V

V

�+
�
; y =

�
#

c1

�
: : :
�
#

cr

�
: : :
�

#

cr+p

�
;

z = w
�
a1
c1

�
: : :
�
ar
cr

��
#

cr+1

�
: : :
�

#

cr+p

�
; or

y =
�
ar
#

�
: : :
�
a1
#

�
w; w 2

�
V
V

�+
�
S (V) ; x =

�
#

cr+p

�
: : :
�
#

cr

�
: : :
�
#

c1

�
;

z =
�

#

cr+p

�
: : :
�

#

cr+1

��
ar
cr

�
: : :
�
a1
c1

�
w; for r � 0; p � 0; r + p � 1;

ai 2 V; 1 � i � r; cj 2 V; 1 � j � r + p; (ai; ci) 2 �; 1 � i � r;

4. x = w
�
#

c1

�
: : :
�
#

cr

�
; w 2 S (V)

�
V

V

�+
�
; y =

�
a1
#

�
: : :
�
ar
#

�
: : :
�
ar+p
#

�
;

z = w
�
a1
c1

�
: : :
�
ar
cr

��
ar+1
#

�
: : :
�
ar+p
#

�
; for

y =
�
#

cr

�
: : :
�
#

c1

�
w; w 2

�
V

V

�+
�
S (V) ; x =

�
ar+p
#

�
: : :
�
ar
#

�
: : :
�
a1
#

�
;

z =
�
ar+p
#

�
: : :
�
ar+1
#

��
ar
cr

�
: : :
�
a1
c1

�
w; for r � 0; p � 0; r + p � 1;

aj 2 V; 1 � j � r + p; ci 2 V; 1 � i � r; (ai; ci) 2 �; 1 � i � r;

5. x = w
�
a1
#

�
: : :
�
ar
#

�
; w 2 S (V)

�
V

V

�+
�
; y =

�
ar+1
#

�
: : :
�
ar+p
#

�
;

z = w
�
a1
#

�
: : :
�
ar
#

��
ar+1
#

�
: : :
�
ar+p
#

�
; or

y =
�
ar
#

�
: : :
�
a1
#

�
w; w 2

�
V

V

�+
�
S (V) ; x =

�
ar+p
#

�
: : :
�
ar+1
#

�
;

z =
�
ar+p
#

�
: : :
�
ar+1
#

��
ar
#

�
: : :
�
a1
#

�
w; for r � 0; p � 0; r + p � 1;

ai 2 V; 1 � i � r + p;

6. x = w
�
#

c1

�
: : :
�
#

cr

�
; w 2 S (V)

�
V

V

�+
�
; y =

�
#

cr+1

�
: : :
�

#

cr+p

�
;

z = w
�
#

c1

�
: : :
�
#

cr

��
#

cr+1

�
: : :
�

#

cr+p

�
; or

y =
�
#

cr

�
: : :
�
#

c1

�
w; w 2

�
V
V

�+
�
S (V) ; x =

�
#

cr+p

�
: : :
�

#

cr+1

�
;

z =
�

#

cr+p

�
: : :
�

#

cr+1

��
#

cr

�
: : :
�
#

c1

�
w; for r � 0; p � 0; r + p � 1;

ci 2 V; 1 � i � r + p;

7. x = w
�
a1
#

�
: : :
�
ar
#

�
; w 2 S (V)

�
V
V

��
�
; y =

�
#

c1

�
: : :
�
#

cr

�
v;

v 2
�
V

V

��
�
S (V) ; wv 2W s

� (V) ; z = w
�
a1
c1

�
: : :
�
ar
cr

�
v; or

x = w
�
#

c1

�
: : :
�
#

cr

�
; w 2 S (V)

�
V

V

��
�
; y =

�
a1
#

�
: : :
�
ar
#

�
v;

v 2
�
V

V

��
�
S (V) ; wv 2W s

� (V) ; z = w
�
a1
c1

�
: : :
�
ar
cr

�
v; for r � 0;

ai 2 V; 1 � i � r; ci 2 V; 1 � i � r; (ai; ci) 2 �; 1 � i � r:

In case 1 (case 2) we add complementary symbols on the lower (upper)

level of x without completing all the blank spaces. In case 3 and case 4 we not

only complete the blank spaces, but may even prolong the strand. In case 5

and case 6 the sticky end of x itself is prolonged. In case 7 we combine two

dominoes whose sticky ends exactly �t together. Of course, for dominoes x; y

which do not satisfy any of the previous conditions, � (x; y) is not de�ned. Note

that in all cases we allow the prolongation of \blunt" ends of strings inW s
� (V) ;

moreover we have � (�; x) = � (x; �) = x for every x 2W s
� (V) ; �nally, observe

that if all (intermediate) results are de�ned, then for dominoes x; y; z 2W� (V)

we have � (� (x; y) ; z) = � (x; � (y; z)) ; i.e. the sticker operation is associative.

3 Bidirectional sticker systems

Using the sticker operation we can de�ne a generating mechanism as follows:

A bidirectional sticker system is a construct
 = ((V; �) ; A; P) ; where V

is an alphabet, � � V � V is a relation on V; A is a �nite subset of W s
� (V) (of

axioms), and P is a �nite set of pairs (Dl; Dr) ; where Dl is the domino to be

adjoined at the left-hand side of the current object and Dr is the domino to

be adjoined at the right-hand side of the current object, repectively; Dl ; Dr 2

W�(V).

The idea behind considering such a machinery is the following: We start

with the objects inA and we prolong them to the left and to the right according

to the sticker operation by using one of the pairs (Dl; Dr). When no sticky

end is present any more, we may stop the derivation.

Formally, for two objects x; z 2W�(V) we write

x =)
 z if and only if z = � (� (Dl; x) ; Dr) for some (Dl ; Dr) 2 P:

By =)�

 we denote the re
exive and transitive closure of the relation =)
 .

A sequence x0 =)
 x1 =)
 : : : =)
 xk; x0 2 A, is called a computation

in
 (of length k). A computation as above is complete when xk 2
�
V

V

�+
�
. The

language generated by
, denoted by L(
), is de�ned by

L(
) =

�
w j w 2

�
V
V

�+
�
; x =)�

 w for some x 2 A

�
:

Therefore, only the complete computations are taken into account when

de�ning L(
). Note that a complete computation can be continued, because

we allow prolongations starting from blunt ends.

A complete computation x0 =)
 x1 =)
 : : : =)
 xk; x0 2 A; xk 2�
V
V

�+
�
; with respect to
, is said to be of bounded delay d; if the sticky ends at

the right-hand side and at the left-hand side of each xi; 0 � i � k; are never

longer than d: The corresponding subset of L (
) is denoted by Ld (
) :

A bidirectional sticker system is called regular, if for every pair (Dl; Dr)

in P either Dl = � or Dr = �; i.e. in each step we can prolong the objects to

the left only or to the right only.

By BSL; RBSL we denote the families of languages generated by arbi-

trary and regular bidirectional sticker systems; the corresponding families of

languages generated by arbitrary and regular bidirectional sticker systems with

computations of bounded delay are denoted by DBSL; DRBSL:

4 Characterizing the regular and the linear languages

We now begin our investigations concerning the generative capacity of bidirec-

tional sticker systems. We will �rst show that the basic variants characterize

the regular languages.

Lemma 1. Every regular language is the projection of a language in DRBSL:

Proof. Let G = (N; T; P; S) be a regular grammar, i.e. we may assume that

each production in P is of the formB ! bC orB ! bwithB;C 2 N and b 2 T:

We now de�ne a regular bidirectional sticker system with L (G) = gT (L (
)) by

 = ((V; �) ; A; P) ; where V = N [T; � = f(x; x) j x 2 N [Tg ; A =
n
S

S

#

S

o
;

and P contains the following pairs of dominoes:�
�; B

#

B

#

b

#

�
;
�
�; #

B

#

b

�
for B ! b in P with B 2 N and b 2 T .�

�; B
#

B
#

b
#

�
;
�
�; #

B
#

b
#

C

�
for B ! bC in P with B;C 2 N and b 2 T .

Moreover, we de�ne gT :
�
V

V

��
�
! T � by gT

��
x

x

��
=

�
x; if x 2 T;

�; if x 2 N:

An object generated by this regular bidirectional sticker system
 rep-

resents the derivation for the corresponding string generated by the regular

grammar G; i.e. if A1 =)G a1A2 =)G ::: =)G a1:::an�1An =)G a1:::an�1an
is a derivation generating the string a1:::an; where A1; :::; An 2 N and A1 = S;

then a corresponding derivation in
 is:
A1

A1

#

A1
=)

A1

A1

A1

A1

A1

#

a1
#

=)

A1

A1

A1

A1

A1

A1

a1
a1

#

A2
=)
 :::

A1

A1

A1

A1

A1

A1

a1
a1

A2

A2

A2

A2
: : :

an�1
an�1

An

An

An

An

an
an

By applying gT to the resulting object of this derivation in
; we obviously

obtain a1 : : :an: Hence, we conclude L (G) = gT (L (
)) : 2

The proof of the opposite direction is based on the fact that in regular

bidirectional sticker systems the adjoinings of dominoes to the right and to the

left are done in an independent way:

Lemma 2. RBSL � REG :

Proof. In a regular bidirectional sticker system
;
 = ((V; �) ; A; P) ;

L (
) = Lm (
) ; where m is the maximum length of the dominoes Dl and

Dr in the rules (Dl; Dr) in P and of the sticky ends of the axioms in A;

because for any derivation in
 generating an object w there is a derivation

of bounded delay m in
 generating w; too. Now we can represent L (
) as

the union and concatenation of languages generated by \subsystems" of
 :

Let us write the axioms in A in the form xiyizi; xi; zi 2 S (V) ; yi 2
�
V
V

�+
�
;

1 � i � k; k � 1; and P = Pl [Pr; where Pl = f(Dl; �) j (Dl; �) 2 Pg and

Pr = f(�;Dr) j (�;Dr) 2 Pg : Then L (
) = [ki=1L (
i;l) gi (L (
i;r)) ; where

i;l = ((V; �) ; fxiyig ; Pl) ;
i;r = ((V; �) ; fyizig ; Pr) ; and gi is the generalized

sequential machine erasing the string yi from the beginning of a string, 1 �

i � k: Moreover, it is easy to verify that L (
i;l) =
�
L
�

ri;l

��r
; where the

superscript r denotes the mirror image and
ri;l = ((V; �) ; f(xiyi)
r
g ; P r

l) ; P
r
l =

f(�; (Dl)
r
) j (Dl; �) 2 Plg :

As REG is closed under arbitrary gsm mappings, union, concatenation,

and mirror image, in the following without loss of generality we now may

assume that A contains only one axiom from
�
V

V

�+
�
S (V) and that in all the

rules (Dl; Dr) in P we have Dl = �: Then we can construct a regular grammar

G; G = (N; TG; PG; S) ; generating Lm (
) in the following way:

N =

8<
:
h�

x1
#

�
: : :
�
xm
#

�i
j for some k � m : xi 2 V for 1 � i � k and

xj = # for k + 1 � j � m

9=
;[

8<
:
h�

#

y1

�
: : :
�
#

ym

�i
j for some k � m : yi 2 V for 1 � i � k and

yj = # for k + 1 � j � m

9=
; ;

TG =
��

a
b

�
j a; b 2 V; (a; b) 2 �

	
;

P contains the following productions (in any case, we assume ai; bi 2 V):

S !
�
a1
b1

�
: : :
�
ak
bk

� h�
ak+1
#

�
: : :
�
an
#

��
#

#

�m�n+k
i
;

if A =
n�

a1
b1

�
: : :
�
ak
bk

��
ak+1
#

�
: : :
�
an
#

�o
for some k � 1; n � k; and

S !
�
a1
b1

�
: : :
�
ak
bk

� h�
#

bk+1

�
: : :
�
#

bn

��
#

#

�m�n+k
i
;

if A =
n�

a1
b1

�
: : :
�
ak
bk

��
#

bk+1

�
: : :
�
#

bn

�o
for some k � 1; n � k:

Moreover, we include X !
�
a1
b1

�
: : :
�
ak
bk

�
Y; where X;Y 2 N and (ai; bi) 2 �

for 1 � i � k; if for some l; n with l � k � n we have:

1. X =
h�

a1
#

�
: : :
�
al
#

��
#

#

�m�l
i
; Y =

h�
ak+1
#

�
: : :
�
an
#

��
#

#

�m�n+k
i
;�

�; #
b1
: : : #

bl

al+1
bl+1

: : : ak
bk

ak+1
#

: : : an
#

�
2 P; or

2. X =
h�

a1
#

�
: : :
�
al
#

��
#

#

�m�l
i
; Y =

h�
#

bk+1

�
: : :
�
#

bn

��
#

#

�m�n+k
i
;�

�; #
b1
: : : #

bl

al+1
bl+1

: : : ak
bk

#

bk+1
: : : #

bn

�
2 P; or

3. X =
h�

#

b1

�
: : :
�
#

bl

��
#

#

�m�l
i
; Y =

h�
#

bk+1

�
: : :
�
#

bn

��
#

#

�m�n+k
i
;�

�;
a1
#
: : :

al
#

al+1
bl+1

: : : ak
bk

#

bk+1
: : : #

bn

�
2 P; or

4. X =
h�

#

b1

�
: : :
�
#

bl

��
#

#

�m�l
i
; Y =

h�
ak+1
#

�
: : :
�
an
#

��
#

#

�m�n+k
i
;�

�; a1
#
: : : al

#

al+1
bl+1

: : : ak
bk

ak+1
#

: : : an
#

�
2 P:

h�
#

#

�mi
! � is the �nal production.

Obviously, using these productions we can simulate the adjoining of domi-

noes to the right in any derivation of
 that is of bounded delay m; hence

L (G) = Lm (
) ; which completes the proof. 2

If we consider bidirectional sticker systems with bounded delay, but allow

to use pairs of adjoining rules, we can represent the linear languages.

Lemma 3. Every linear language is the projection of a language in DBSL:

Proof. Let G = (N; T; P; S) be a linear grammar, i.e. without loss of

generality we can assume that N = N 0[fEg ; E =2 N 0; P = P 0[fE ! �g and

each production in P 0 is of the formB ! uCv with B 2 N 0; C 2 N; and u; v 2

T �:Moreover, let m = max fjuj ; jvj j B ! uCv is a production in P 0g+1:We

now construct a bidirectional sticker system
 with L (G) = gT (Lm (
)) in such

a way that the derivation of a word w in G is simulated by
 in the reversed

order:
 = ((V; �) ; A; P) ; V = N [T; � = f(x; x) j x 2 N [Tg ; A =
n
#

E

E

E

#

E

o

and P contains
��

S

#

�
;
�
S

#

��
and for any production B ! uCv in P with

B 2 N 0; C 2 N; and u; v 2 T � the following pairs of dominoes:�
B u C

#juj
;
C v B

#jvj

�
;

�
#juj

B B u
;
#jvj # #

v B B

�
:

The projection gT :
�
V

V

��
�
! T � is de�ned by gT

��
x

x

��
=

�
x; if x 2 T;

�; if x 2 N:

An object generated by this bidirectional sticker system represents the

corresponding derivation for the string generated by the linear grammar G;

i.e. if A1 =)G u1A2v1 =)G ::: =)G u1:::un�1unvnvn�1:::v1 is the derivation

generating the string u1:::unvn:::v1; where A1; :::; An 2 N 0; An+1 = E; and

A1 = S; then the corresponding derivation in
 is:

E

E E E
=)

An un E E E vn An

#junj E E E #jvnj
=)
 : : :

A1 A1 u1 A2 : : : un E E E vn : : : A2 v1 A1 A1

A1 A1 u1 A2 : : : un E E E vn : : : A2 v1 A1 A1

By applying gT to result of this derivation in
; we obviously obtain

u1 : : : unvn : : : v1: Hence, we conclude gT (Lm (
)) = L (G) : 2

As we shall show in the following section, bidirectional sticker systems

without the restriction of bounded delay derivations are very powerful and

can represent every recursively enumerable language, yet as long as we only

consider such derivations with bounded lengths of sticky ends at both sides,

we do not go beyond linear languages.

Lemma 4. DBSL � LIN :

Proof. Let m � 1 and
 be a bidirectional sticker system,
 =

((V; �) ; A; P) : We now construct a linear grammar G; G = (N; T; PG; S) ;

generating the objects of Lm (G) in the reversed order:

N =
nh�

x1
#

�
: : :
�
x2m
#

�i
j for some l; r with 0 � l � m; m � r � 2m:

xi 2 V for all i 2 fj j 1 � j � l or r + 1 � j � 2mg ;

xj = # for all j with l + 1 � j � rg[nh�
#

y1

�
: : :
�

#

y2m

�i
j for some l; r with 0 � l � m; m � r � 2m:

yi 2 V for all i 2 fj j 1 � j � l or r + 1 � j � 2mg ;

yj = # for all j with l + 1 � j � rg[nh�
x1
y1

�
: : :
�
x2m
y2m

�i
j for some l; r with 0 � l � m; m � r � 2m:

xi 2 V for 1 � i � l and xj = # for l + 1 � j � 2m;

yi 2 V for r + 1 � i � 2m; yj = # for 1 � j � rg[nh�
x1
y1

�
: : :
�
x2m
y2m

�i
j for some l; r with 0 � l � m; m � r � 2m:

yi 2 V for 1 � i � l and yj = # for l + 1 � j � 2m;

xi 2 V for r + 1 � i � 2m; xj = # for 1 � j � rg :
i.e. we use non-terminal symbols remembering at most 2m positions in the

middle of the object derived so far.

T =
��

a
b

�
j a; b 2 V; (a; b) 2 �

	
;

P contains productions of the following kinds:

If
�
a1
#

�
: : :
�
al
#

��
al+1
bl+1

�
: : :
�
ak
bk

��
ak+1
#

�
: : :
�
an
#

�
2 A

for some l; k; n � 0 with l < k � n; then

X !

�
a1
b1

�
: : :
�
al
bl

��
al+1
bl+1

�
: : :
�
ak
bk

��
ak+1
bk+1

�
: : :
�
an
bn

�
in PG with X 2 N;

X =
h�

#

b1

�
: : :
�
#

bl

��
#

#

�
: : :
�
#

#

��
#

bk+1

�
: : :
�
#

bn

�i
; ai; bi 2 V; (ai; bi) 2 � for

1 � i � n; terminates a derivation in G at an axiom of
; which started the

corresponding derivation in
: The remaining variants of the axiom and the

variable X; respectively, are obvious and therefore left to the reader.

If (Dl; Dr) 2 P with

Dl =
a1
#
: : : al

#

al+1
bl+1

: : : ak
bk

#

bk+1
: : : #

bn
; Dr =

#

d1
: : : #

dr

cr+1
dr+1

: : : cs
ds

cs+1
#

: : : ct
#
;

for some l; k; n; r; s; t� 0 with l � k � n and r � s � t; then

X !

�
a1
b1

�
: : :
�
ak
bk

�
Y
�
cr+1
dr+1

�
: : :
�
ct
dt

�
in PG; where X;Y 2 N;

X =
h�

#

b1

�
: : :
�
#

bl

��
#

#

�
: : :
�
#

#

��
#

ds+1

�
: : :
�
#

dt

�i
;

Y =
h�

#

bk+1

�
: : :
�
#

bn

��
#

#

�
: : :
�
#

#

��
#

d1

�
: : :
�
#

dr

�i
;

(ai; bi) 2 � for 1 � i � k; (cj ; dj) 2 � for 1 � j � s; simulates a derivation step

of
 in G in the reversed order. The remaining variants of the rule (Dl; Dr)

and the variables X;Y; respectively, again are rather obvious and therefore left

to the reader.

According to the construction given above, any derivation in
 that is of

bounded delay m and generates an object w; w 2
�
V

V

�+
�
; can be simulated by a

corresponding derivation in G that generates w in the reversed order. Hence,

we conclude L (G) = Lm (
) : 2

5 Characterizing the recursively enumerable languages

We now are going to show our main result, i.e. the representation of recursively

enumerable languages by bidirectional sticker systems:

Lemma 5. For any recursively enumerable language L; L � T �; there exist a

bidirectional sticker system
 and a morphism g such that L = g (L (
)) :

Proof. We use the following characterization of L 5:

For each recursively enumerable language L; L � T �; there exist two non-

erasing morphisms h1; h2 : ��

2 ! ��

1, a regular language R � ��

1, and a

projection hT : ��

1 ! T � de�ned by hT (a) =

�
a; if a 2 T;

�; if a 2 �1 n T;
such that

L = hT (h1(E(h1; h2)) \R); where E (h1; h2) = fw 2 ��

2 j h1 (w) = h2 (w)g :

Now let L be given according to the preceding characterization as

hT (h1(E(h1; h2)) \ R, and R be given by the (deterministic) �nite automa-

ton M = (Q;�1; �; q0; F) : We now de�ne a bidirectional sticker system

 = ((V; �) ; A; P) with L = g (L (
)) by V = �1 [~�1 [Q [fC;E; F;X;Zg ;

� = f(x; x) j x 2 V g ; A =
n
q0
#

X
X

Z
#

o
and P containing the following pairs of

adjoining rules:

For any a 2 �2; h1 (a) = b1 : : : bk; h2 (a) = c1 : : : cm; for any arbitrary

states qij from Q; 0 � j � m + 1; such that �
�
qij ; cj

�
= qij+1 ; 0 � j � m :�

qim+1
~cm qim : : : qi2 ~c2 qi1 qi1 ~c1 qi0

: : : # # # # #
;

b1 C Z b2 C : : : Z bk C Z

: : : # # #

�
:

To the left we produce the reversed image of a word w 2 ��

2 under h2 at the

same time guessing a valid path through the �nite automaton M; whereas to

the right we produce the image of w under h1 the symbols of which separated

by the characters C;Z:�
#
~b
; #
b

#

C

�
for all b 2 �1; by these rules, the correspondence (equality) of

symbols on the left-hand side and on the right-hand side is checked.�
#

q
#

q
; #
Z

�
for all q 2 Q; by these rules, the validity of the previously

guessed paths through the �nite automaton M is checked.�
F
#

qf
#
; E
#

�
for all qf 2 F ;

�
#

F
; #
E

�
: If the checks described above are all

successful and M has reached a �nal state, the sticky ends can be completed,

which for the �rst time yields a con�guration with blunt ends on both sides. If

such an object is prolonged, it never can yield another object with blunt ends

at both sides any more.

Moreover, we de�ne g :
�
V

V

��
�
! T � by g

��
x

x

��
=

�
x; if x 2 T;

�; if x 2 V n T:

From these constructions described above the reader can easily verify the equal-

ity L = g (L (
)). 2

Using the construction given in the preceding proof, we can derive a rep-

resentation of recursively enumerable languages as the projection of the inter-

section of two minimal linear languages.

A minimal linear grammar is a linear grammar containing only one non-

terminal symbol. Any language that can be generated by a minimal linear

grammar is called a minimal linear laguage.

Corollary 1. For any recursively enumerable language L; L � T �; there exist

two minimal linear languages L1; L2 ��
� and a projection gT : �� ! T � such

that L = gT (L1 \ L2) :

Proof. We take the construction of the bidirectional sticker system given

in the preceding proof and consider the upper row as the element of L1 and the

lower row as the element of L2: Hence we construct the following two minimal

linear grammars G1 and G2 :

Gi = (fSg ;�; Pi; S) ; i 2 f1; 2g ;

� = �1 [~�1 [Q [fC;E; F;X;Zg ;

P1 =
�
S ! qim+1

~cmqim : : : qi2~c2qi1qi1~c1qi0Sb1CZb2C : : :ZbkCZ j a 2 �2;

h1 (a) = b1 : : : bk; h2 (a) = c1 : : : cm; �
�
qij ; cj

�
= qij+1 ; 0 � j � m

	
[

fS ! FqfSE j qf 2 Fg[fS ! q0XZg ;

P2 = fS ! qqSZ j q 2 Qg[
n
S ! ~bSbC j b 2 �1

o
[fS ! FSE; S ! Xg :

The projection gT : �� ! T � is de�ned by gT (a) =

�
a; if a 2 T;

�; if a 2 � n T:

The result now follows immediately from the proof of Lemma 6. 2

References

1. L. M. Adleman, Molecular computation of solutions to combinatorial

problems, Science, 226, 1021 { 1024 (Nov. 1994).

2. E. Csuhaj-Varj�u, R. Freund, L. Kari, Gh. P�aun, DNA computing based

on splicing: universality results, First Annual Paci�c Symposium on Bio-

computing, Hawaii (Jan. 1996).

3. T. Head, Formal language theory and DNA: an analysis of the generative

capacity of speci�c recombinant behaviors, Bull. Math. Biology, 737 {

759 (1987).

4. T. Head, Gh. P�aun, D. Pixton, Language theory and molecular genetics.

Generative mechanisms suggested by DNA recombination, in 9 (1997).

5. L. Kari, Gh. P�aun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing,

sticker systems, and universality, submitted, (1996).

6. Gh. P�aun, Splicing. A challenge to formal language theorists, Bulletin

EATCS, 57, 183 { 194 (1995).

7. Gh. P�aun, Regular extended H systems are computationally universal,

J. Automata, Languages and Combinatorics, 1, 1, 27 { 36 (1996).

8. Gh. P�aun, A. Salomaa, DNA computing based on the splicing operation,

Mathematica Japonica, 43, 3, 607 { 632 (1996).

9. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages,

Springer (1997).

