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Volume rendering is an important technique for computational biology. In this
paper we propose a new wavelet-assisted volume ray casting algorithm. The main
idea is to use the wavelet coefficients for detecting the local frequency, and decide
the appropriate sampling rate along the ray according to the maximum frequency.
Our algorithm is to first apply the 3D discrete wavelet transform on the volume,
then create an index volume to indicate the necessary sampling distance at each
voxel. During ray casting, the original volume is traversed in the spatial domain,
while the index volume is used to decide the appropriate sampling distance. We
demonstrate that our algorithm provides a framework for approximating the vol-
ume rendering at different levels of quality in a rapid and controlled way.

1 Introduction

With the extensive research and development effort for 3D sampled and simu-
lated datasets, such as in the fields of biology and medical applications, volume
approach are becoming more and more important 1. In volume approach 3D
volume rasters are used to represent the 3D models. A (regular) volume raster
consists of three dimensional grid where each grid point represents a sample
point or a voxel in 3D space. The underlining continuous model can be recon-
structed from this discrete representation according to the sam pIing theory.
One of the main advantages of volume representations is that it is the natu-
ral representation for the modeling of many datasets, e.g., a simulated electron
density map of a protein or a CT-scanned human head, where the surface struc-
tures do not exist or are difficult to derive. Another advantage is that volume
representation can been applied to visualize the inner structures of datasets,
which is an important feature required by applications like virtual surgery.
Finally, a volumetric object can be easily manipulated, therefore supporting a
variety of effective user interactions.

On the other hand, volume representation requires extensive computa-
tional and storage resources. For example, a single 512 x 512 x 512 volume
may require at least 128MB for storage, and could takes minutes for software
rendering. This problem has led to the development of both software and
hardware optimization techniques. In this paper we propose a new volume
rendering accelerating algorithm based on the application of wavelet theory.
The remaining of the paper is organized as follows. In Sec. 2 we briefly in-
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troduce the concept of volume rendering and discuss some previous work on
fast algorithms. In Sec. 3 we introduce the concept of multiresolution analysis
and wavelet transform. We present our wavelet-assisted volume ray casting
algorithm in Sec. 4. In Sec. 5 we present some results and summarize in Sec. 6.

2 Volume Rendering

Volume rendering is the process of projecting a 3D scene consisting of volumet-
ric datasets onto a 2D image. It typically relies on the low-albedo approxima-
tion to how the volume data generates, scatters, or occludes light. Effects of
the light interaction at each dataset location are integrated continuously along
viewing rays according to the following equation:

I(x, w)= iTe- J: 5(,)d, I(t)dt
(1)

where x is the origin of the ray, w is the unit direction vector of the ray, 8(s)
is the differential attenuation at x + sw, and I(t) is the differential intensity
scattered at x+tw in the direction -w. The real implementation of volume ren-
dering is almost always a discrete approximation of Eq. 1. Still, such approxi-
mation is usually very expensive and makes volume rendering notoriously slow.
Traditionally, volume rendering can be divided into object-order, image-order,
and domain techniques. In this paper we the focus on the wavelet-assisted ray
casting, which is an combination of image-order and domain technique. For a
more comprehensive study of direct volume rendering, we would like to point
to the paper by Max 2.

Volume ray casting3 is the most widely used image-order rendering method.
It is usually divided into three steps, traversing and uniform sampling along
the ray, shading the sampling points according to a illumination model to get
the color of the sampling points, and compositing the color of the sampling
points to derive the final color of the pixel. One of the main problems for
ray casting is that uniform sampling wastes much time on the traversing and
sampling in the empty or homogeneous regions, which could have been safely
neglected. To solve this problem, several optimization algorithms have been
proposed, such as pyramid structure 4, empty space skipping (e.g., Yagel et
at. 5), and importance sampling 6. However, these approaches either only con-
cern about skipping the empty/homogeneous space, or impose some artificial
structure such as octree on the dataset for dealing with low frequency area.
Nevertheless, ray casting by far provides the highest quality volume rendering
Image.
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In domain rendering the spatial data is first transformed into another
domain, such as compression, frequency, and wavelet domain, and then a pro-
jection is generated directly from that domain or with the help of information
from that domain. Among the studied domain transform, wavelet transform
provides a multiresolution frame of the datasets. The main idea of our algo-
rithm is to utilize this property to accelerate volume rendering.

3 Wavelet Transform

Wavelet theory has gained popularity in the recent years for its applications
to many fields such as computer graphics 7. Rooted in the time-frequency
analysis, the beauty of wavelet theory is that it provides an elegant multi-
resolution hierarchy based on the sound multi-resolution signal analysis.

Multiresolution signal analysis decomposes a function into a smooth ap-
proximation of the original function and a set of detailed information at dif-
ferent resolutions. Following the descriptions of Mallat 8, let L2(R) denotes all
functions with finite energy; the smooth approximation of a function f E L2(R)
at any resolution 2i is a projection denoted as A2i : L2(R) ~ V2i, V2i E L2(R),
and the detail of f at any higher resolution 2j is a projection of f onto a sub-
space °2j of L2(R) denoted as P2j : L2(R) ~ °2j, j > i. Consequently,
the finest detailed information is contained in P2j with the highest resolution.
By choosing the appropriate projection functions, we have Vo = L2(R) and
L2(R) = E9J=i02j E9V2i. It can be proven that there exists two families of
functions:

'l/Jj,n= 2-j/2'l/J(2jt - n)nEZ
A.. - 2-j/2A.. (2

j t )'Pj,n - 'P - n nEZ, (2)

which constitute the basis of V2j and °2j, respectively. 'l/Jj,nare called wavelets
and 4>j,nare the corresponding scaling junctions. We define the wavelet coef-
ficients for f as:

dj,k:= L: ,pj,k(x)dx =< j"pj,k >

Cj,k:= f: <Pj,k(x)dx =< j, <Pj,k>
(3)

In practice, instead of calculating the inner product in Eq. 3, a pyramidal
algorithm is applied for the decomposition of the function (Fig. l(a)), where
H(n) = H( -n) and G(n) = G( -n). H is correspondent to a low pass filter
(projection A2i) and G is correspondent to a high pass filter (projection P2i).
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By repeating the algorithm, both the discrete detail signal and the discrete
approximation at resolution 2j can be computed. Using the same pair of filters,
the original discrete samples can be reconstructed by the reverse pyra:midal
algorithm, as shown in (Fig. l(b)).

gj-I

fj-IX

f.
J

---f.
J

(a) (b)

~ : I sample out of 2 [!}]: a 0 between 2 samples

OJ : multiplicationby 2 [L]: convolve with filter X

Figure 1: Wavelet decomposition and reconstruction.

Wavelet theory can be easily expanded to any dimension by construct-
ing high dimension wavelets using the tensor product of several subspaces of
L2(R) 9. To decompose or reconstruct a 3D volume, the one dimensional pyra-
midal algorithm described in Fig. 1 is applied sequentially along the principal
axes. Since the convolution along each axis is separable, for a volume of size
n3, the decomposition and reconstruction can be implem~nted in O( n3) time,
which is asymptotically optimal. The smooth approximation of a volume at
resolution 2j+1 decomposes into a smooth approximation at resolution 2j and
the discrete detail signals along seven orientations. When the wavelets and
scaling functions are orthogonal, the multiresolution representation has the
same total number of samples as the original function.

4 Wavelet-Assisted Volume Ray Casting

Wavelets have attracted researchers' attentions for the purpose of volume vi-
sualization from the beginning. Muraki first applied wavelet transform to vol-
umetric datasets 9, Gross et al. 10found an approximate solution to the volume
rendering equation using orthonormal wavelet functions, and Westermann 11
combined volume rendering with wavelet-based compression. However, all of
these algorithms have not succeeded on the acceleration of volume rendering
using wavelets. The main difficulty here is that the wavelet coefficients are
not in spatial domain. The direct evaluation of the volume render equation
(Eq. 1) is usually much more expensive than reconstruction of the function to
spatial domain. On the other hand, although the overall reconstruction can
be performed in O(N3) time for an N3 volume, the on-the-fly reconstruction
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of the spatial scalar value at a certain position from wavelet domain involves
a large number of coefficients and computations, which can easily offset the
benefit of wavelet rendering. In this section we propose a new data structure
to overcome this difficulty.

4.1 Spatial- Frequency Locality

The basic idea of our approach is that during volume ray casting, the appropri-
ate sampling rate along a certain ray should be decided by the maximum local
frequency. Higher frequency means high sampling rate, and vice versa. This
idea has been previously proposed by Danskin and Hanrahan 6, where Monte
Carlo method is used to detect the local homogeneity. On the other hand, the
wavelet coefficients can be used to detect the maximum local frequency, and
accelerate the sampling process during ray casting.

To derive the relationship between the appropriate sampling distance and
the local frequency, we first accept the basic assumption of volume rendering
that the input signal is band-limited and properly sampled. In other words,
the continuous signal represented by the volume can theoretically be perfectly
reconstructed. We further assume that the standard sampling frequency along
a certain ray is j, and j is above the Nyquist frequency of a volume V along
this ray. When the 3D discrete wavelet transform, as described in Sec. 3, is
applied to the V, V will be decomposed into a set of smooth wavelet coefficients
c at resolution 2-M and a set of detailed wavelet coefficients d at different

resolutions, from 2-M to 2-1. V can be perfectly reconstructed from the
summation of the inner product (multiplications) of these coefficients and the
corresponding scaling functions and wavelets, which are the 3D extensions of
those defined in Eq. 2. Unlike the cos and sin waves used by Fourier transform,
wavelets have local decay in both time(spatial) and frequency domain, i.e, they
have time(spatial)-jrequency locality. Mathematically, for a wavelet 'ljJj,kas
defined in Eq. 2, there exists a so called time(spatial)-jrequency window 12:

[2-j k+2-jt* ,-2-j ~~, 2-j k+2-jt* -2-j ~~] x [2jw* -2j ~J;' 2jw* +2j ~J;] (4)

where 'IjJand its Fourier transform 'IjJare window functions with centers and

radius given by t*, ~~, w*, ~J;' respectively. It can be clearly seen from
the time-frequency window that as the level j decreases from -1 to - M, the
time (space) window is getting larger and larger, and the frequency window is
getting narrower and narrower. This fact is illustrated in Fig. 2. Eq. 4 tells
that wavelets at level j represent the localized information in the frequency

window [2jw* - 2j ~J;' 2j w*+ 2j ~J;]' so the highest frequency is 2j w*+ 2j t:J.J;.
From Shannon's sampling theorem, that means the Nyquist frequency for the
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wavelets is halved when j is decreased by 1. In other words, the sampling
distance can be doubled without introducing aliasing. This derivation can be
extended to 3D.

frequency

ljt,< fooD

2
j2 * I --[ 0--'

0) t : :
, .

-jl -jl
2 k + 2 t*

-j2 -j2
2 k + 2 t*

time

Figure 2: Time(Spatial) frequency window, j1 2: j2.

Westermann 11 has previously studied such relationships between the wavelet
coefficients and the sampling distance along the ray. In his algorithm, given an
actual sampling distance, one can decide exactly up to which frequency the sig-
nal can be reconstructed without introducing aliasing according to Shannon's
sampling theorem, and in turn decide up to which level the wavelet coefficients
should still contribute to the sampling.

Another popular transform for detecting the local frequency is the Short-
Time Fourier Transform (STFT). However, since the window size is fixed in

STFT, it is not good at detecting signals with high/low frequencies. In compar-
ison, wavelet transform projects a function onto several frequency bands with
different window widths. For analyzing high frequency, the window width is
narrow. For analyzing low frequency, the window width is wide. This prop-

erty makes multiresolution wavelet coefficients a better choice for analyzing
the change of local frequency.

4.2 Index Volume

Westermann 11 focused on using a small amount of memory during rendering.
In his algorithm, a volume is first transformed into wavelet domain and all

the wavelet coefficients are saved in a run length encoded linear array. During
ray casting, at each sample point along the ray the wavelet coefficients are
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traversed from the finest to the coarsest level, examining those coefficients
which influence the actual sample, i.e., those coefficients whose magnitude are
above certain threshold. For each of them the coefficient is multiplied with
the basis wavelet function and added to the sample value. In other words,
the spatial information is reconstructed from the coefficients on-the-fly, which
dramatically slow down the rendering process.

To avoid such an expensive traversing in and reconstructing from the
wavelet domain, we pre-compute an index volume with the same resolution
as the original volume to indicate the necessary sampling distance at each
voxel. This sampling distance is decided by checking the magnitudes of the
different resolution wavelet coefficients affecting that voxel. If the standard
sampling distance is d, and the magnitudes of all the relevant wavelet coeffi-
cients from level -1 to - L are below a user specified error bound E, then the
appropriate sampling distance is 2Ld. This relation is based on the derivation
in Sec. 4.1. The relevance of the co,efficients is decided by the time (space)
window in Eq. 4. In the real implementation, it is decided by the length of the
filter support of those filters in Fig. 1.

Our wavelet-based volume ray casting algorithm is therefore as following.
We first apply the 3D discrete wavelet transform on the volume, then create an
index volume according to E. During ray casting, the original spatial volume is
traversed, and the index volume is used to decide the next appropriate sampling
distance. This process is illustrated in Fig. 3. Note that in Fig. 3, instead of
saving the appropriate sampling distance 2Ld at each voxel, we only need to
save an integer L. Since L is at most log2 N for an N3 volume, we only use 4
bits per voxel to save the indexes. This allows us to handle the volumes up to
the size of 327683, far exceeding the normal volume size. A small power look
up table is created to save the actual sampling distance multiplier 2L.

II

3 2 2 2 2 3

,... ..
2 2 2 1

2 1 1

-
1 1 2 2

3 2 2 2 3

Figure 3: Index volume for wavelet ray casting.
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The biggest advantage of our algorithm is the combination of spatial and
wavelet domain rendering. Unlike in the previous work, the time consuming
on-the-fly data reconstruction from wavelet coefficients is avoided by directly
performing sampling in the spatial data. Wavelet coefficients are applied to
assist the standard volume rendering by providing the information on the ap-
propriate sampling rate at each position. Since the index volume is a flat
structure with the same resolution of the spatial volume, it can be traversed
simultaneously with the spatial rays. Therefore, unlike using the traditional
pyramid structure 116, there is no need to traverse an octree, which is also an
expensive step. Comparing to the existing empty space jumping algorithms,
our approach can not only skip the empty/homogeneous space, but also au-
tomatically adjust the sampling distance according to the bandlimits of local
space. It does not assume any artificial subdivision of the low frequency area
(e.g., the boundary of an octree), and fully takes advantage of the elegant mul-
tiresolution frame provided by the wavelet transform. In general, it provides
a framework for approximating the volume rendering in a fast and controlled
way.

There are two potential problems with this index volume approach. First,
our algorithm requires an ~3 bytes extra memory for an N3 volume. Usually
it is not a big overhead. However, for a high resolution volume, memory could
be the bottleneck of the rendering process. One compromise is to reduce the
resolution of the index volume in the trade of lower acceleration rate. Second,
an index volume needs to be reconstructed every time the user changes the error
bound E. Fortunately, the construction of the index volume is an linear process.
Comparing to the inverse wavelet transform used for reconstructing spatial
information from wavelet domain, an index volume can be generated much
more efficiently. Meanwhile, the index volume does not need to be recomputed
when the view parameters are changed, which allows fast manipulation (e.g.,
translation/rotation) of the volume.

5 Results

We have implemented our wavelet-assisted volume ray casting algorithm within
VolVis, a public domain volume visualization system developed at State Uni-
versity of New York at Stony Brook 13. All the experiments were conducted
on an SGI 02, equipped with a 174MHz Mips R5000 processor and 128MB
of main memory. The data set is a simulated negative potential of a high
potential iron protein. The size of the dataset is 64 x 64 x 64, and the scalar
density value ranges from 0 to 255. The size of all the images are 150 x 150. To
compare our algorithm with the traditional method, we first render the pro-
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tein with the standard high quality uniform-sampling ray casting algorithm
provided by VolVis, and use the result as our reference image.

One of the main factors affecting the rendering speed and quality is the
choice of the underlining wavelets. Basically, the smoothness and compactness
of the wavelets influence the spatial and frequency localization. For the ex-
periments we have tested the Haar wavelet, the Daubechies wavelets, and the
Battle-Lemari<~ wavelets. Haar wavelet is chosen because it is closely related
to the pyramid structure, and has the smallest support:2. Daubechies wavelets
are the orthogonal wavelets with the smallest possible support in relation to
a given requirement on the smoothness (vanishing moments.) In this exper-
iments, we use the Daubechies wavelets with support 4. The Battle-Lemarie
wavelets family is associated with the widely used B-spline, and in our example
we chose the one with support of 33. The detail discussion of these wavelets
is out of the scope of this paper, and we would like to point to the book by 14.

Fig. 4 presents the result of our wavelet-assisted volume rendering. From
top to bottom Haar, Daubechies 4, and Battle-Lemarie wavelets are applied,
respectively- From left to right we set the error bound to be 0,1,3,5,10,
respectively, in the scale of 0 to 255. The first rows of each two row presents
the rendering image, and the second row presents the absolute value of the
pixel-wise difference between the correspondent image and the reference image
generated with the standard ray casting. The construction of the index volume
takes about 0.05 see each time.

The rendering time of the standard algorithm is 9.58 see, and that of our
algorithms is summarized in Tab. 1. For Haar wavelets, the time saving ratio
ranges from 28% when E = 1 to 76% when E = 10, for DAUBCH4, from 15%
to 76%, and for Battle-Lemarie, from -7% to 88%. Note that for the same
error bound, smoother wavelet is usually faster since it is better at detecting
the local frequency. However, when the bound is 0, wavelet support is a more
important factor for timing.

Table 1: Rendering time (sees) with different error bounds and wavelets.

E HAAR DAUBCH4 Battle-Lemarie
0 6.90 8.16 10.28
1 5.20 4.27 3.80
3 3.94 3.22 2.33
5 3.23 2.69 1.72
10 2.26 2.19 1.44
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Figure 4: A simulated negative high potential iron protein rendered with wavelet-assisted
ray casting using different wavelets. From left to right increasing error bound (0, 1, 3, 5, 10).
From top to bottom: the RAAR, the DAUBCR 4, and the Battle-Lemarie wavelets. First
rows: resulting image. Next rows: absolute value of the pixel-wise error compared to the
image generated with standard high quality uniform-sampling volume ray casting algorithm.
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Tab. 2 summarizes the mean square errors of our results compared to
the reference image. Note that for the same error bound, smoother wavelet
would generates worse results. The reason is that since smoother wavelets have
larger support, the total energy omitted is bigger for a certain €. Also note
that when € is set to be 0, the generated images are almost identical to the
reference image. The maximum time savings of 28% is achieved through our
algorithm's capability of skipping the empty space.

Table 2: Mean square error with different error bounds and wavelets.

Our algorithm can be applied together with other volume ray casting accel-
eration approaches, such as Danskin and Hanrahan's ,B-acceleration 6. We chose
to compare our algorithm with the almost vanilla volume ray casting (early ray
termination is applied) to demonstrate the effectiveness of the method. Since
the speed acceleration is achieved through non-uniform sampling, we expect
to achieve similar speed up with other volume renderer.

6 Conclusion and Future Work

In this paper we present a wavelet-assisted fast volume ray casting algorithm.
Our idea is to utilize the spatial-frequency locality of the wavelet coefficients
to detect the maximum local frequency, then in turn decide the appropriate
sampling rate. To avoid the expensive real time reconstruction of spatial func-
tion from the wavelet domain, we propose to create an index volume with the
same resolution as the original volume saving the sampling distance, and ap-
ply the information to pefform adaptive-sampling ray casting in the spatial
domain. Besides the capability of accelerating the volume rendering speed,
the main advantage of our algorithms is that it provides a framework where
rendering speed can be traded with image accuracy. In other words, volume
rendering can be approximated in a fast and controlled way. Our experiments
have demonstrated that we can generate good quality volume rendering results
with less than 12% of the time of using the standard algorithm.

HAAR DAUBCH4 Battle- Lemarie
0 0.044 0.027 0.026
1 0.054 2.140 4.055
3 0.153 6.651 8.872
5 0.365 8.541 11.30
10 1.760 11.071 10.91
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The idea of adaptive sampling according to the local frequency can be
applied to other volume renderer including splatting or shear-warp rendering.
We are currently working on the re-implementing a suite of algorithms with
the help of wavelet transform. Another working direction is to find the optimal
wavelets for volume rendering.
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