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We have produced a model of genetic regulation to simulate how neuroblasts and

sensory organ precursor (SOP) cells di�erentiate from proneural clusters of equiv-
alent cells. Parameters of the model (mainly gene interaction strengths) are opti-

mized in order to �t schematic patterns of expression, drawn from the literature,
of genes that are involved in this process of cell fate speci�cation. The model

provides suggestions about the role of lateral signalling in neurogenesis and yields
speci�c and testable predictions about the timing and position of appearance of
neuroblasts and SOPs within proneural clusters, and about the dynamics of gene

expression in individual cells. Experimental testing of these predictions and �ts to
more accurate quantitative data will help determinewhich set of model parameters

can best describe early neurogenesis.

1 Introduction

In Drosophila, neuroblasts and sensory organ precursor (SOP) cells di�erenti-

ate from epithelia to give rise to the central nervous system in the y embryo

and to epidermal sensory organs in the peripheral nervous system of the adult

y, respectively. Neuroblasts are neural precursor cells that divide to form

neurons and glia; they segregate from the ventral neuroectoderm of the insect

embryo in a regular segmental pattern1. SOPs appear at stereotypical positions

on imaginal discs of y larvae and divide to produce a neuron and three other

cells that form Drosophila's sensory organs, like the bristles on its thorax2.

Neuroblasts and SOPs di�erentiate from apparently equivalent clusters of

cells expressing genes of the achaete-scute complex, so called proneural genes.

Eventually only one cell from each proneural cluster retains proneural gene

expression and becomes a neuroblast or SOP, in a process referred to as clus-

ter resolution. Other genes involved in this speci�cation of cell fate are also

expressed in characteristic spatiotemporal patterns, including hairy and genes

of the Enhancer-of-split complex which tend to restrict proneural clusters and

aPresent address: Machine Learning Systems Group, Jet Propulsion Laboratory, 4800
Oak Grove Drive, Pasadena, CA 91109, USA.



favor the undi�erentiated, epithelial state and which we refer to as epithelial

genes. Genetic, molecular and ablation studies have pointed to a lateral sig-

nalling interaction between adjacent cells, through which the neural fate is

promoted in the future neuroblasts and SOPs and suppressed in other cells3;4.

Despite the number of empirical observations that have been gathered,

several features of this system remain unexplained: a precise characterization

of lateral signalling is still lacking; we do not understand dynamical aspects

of the system, for example, whether and how the shape and size of proneural

clusters determine how cluster resolution proceeds; it is not clear what the role

of neuroblast delamination is in cluster resolution in the y embryo.

To address questions like these and guide further experiments, we have

constructed a computational model to simulate neuroblast and SOP di�eren-

tiation, based on the modeling framework described in Mjolsness et al.5: we

have used recurrent neural nets to represent gene interactions as well as other

regulatory and signalling events. The same framework has been previously

used to simulate gene expression patterns in the Drosophila blastoderm6;7.

2 Model

In our model, cells are represented as overlapping cylinders in a 2-dimensional

hexagonal lattice; the extent of overlap determines the strength of interaction

between neighboring cells (see Fig. 1). Cells in the model express a small

number of genes corresponding to genes that are involved in neuroblast and

SOP di�erentiation. In the work presented here, we have used networks of

two genes to �t expression patterns corresponding in broad terms to proneural

genes, on one hand, and to epithelial genes, on the other.

Genes interact as nodes in recurrent neural nets, with connection weights

depending on the kind of the interaction: we allow two kinds of interaction,

an intracellular and a lateral signalling one (which respectively correspond to

one-cell and two-cell continuous rules of Mjolsness et al.5). A gene a sums

inputs from genes in the same cell or in neighboring cells at time t according

to the following equation (cf. Eq. 22 of Mjolsness et al.5)
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where T is the matrix of gene interactions and the vb(t) gene product concen-

trations within the cell; T̂ is the matrix of gene interactions with neighboring

cells and the v̂ib(t) product concentrations in neighboring cell i; N the set of

neighboring cells (the neighborhood of a cell consists of the six surrounding

cells); and �i a factor depending on the overlap of the cell with neighboring



cell i, as measured for instance by the common chord of the bases of the two

adjacent cylinders (see Fig. 1). Concentration va(t) of the product of gene a

then changes according to (cf. Eq. 2 of Mjolsness et al.5)

dva

dt
= Rag(ua(t) + ha) � �ava(t) (2)

where ua(t) is the linear sum of Eq. 1, g a sigmoid function, Ra the rate of

production of gene a's product, ha the threshold of activation of gene a and

�a the rate of decay of gene a product.

The model also includes detachment of cells from the epithelium, delami-

nation, perpendicular to the plane of the epithelium | neuroblasts are known

to delaminate as they di�erentiate. Cell delamination is directly controlled

by genes within a cell and only indirectly by neighboring cells; there are two

parameters that determine how strongly each gene promotes or suppresses de-

lamination, as well as another two that determine delamination rate and a

threshold for delamination to be activated. Delamination changes the area of

apposition of neighboring cells, i.e. changes the factors �i in Eq. 1 above and

therefore modulates the strength of interaction between neighboring cells.

We optimize gene interaction strengths (and other parameters in the equa-

tions above) to �t gene expression patterns; the cost function optimized is

E =
X

cells;genes;times

(viaMODEL(t)� viaDATA(t))
2; (3)

which is the squared di�erence between gene product concentrations in the

model and those in the dataset, summed over all cells and over all gene products

and times for which data is available. We have used a stochastic algorithm,

simulated annealing, for this optimization. For more details on the model and

the optimization method used see Marnellos (1997) 8.

3 Simulation Results

3.1 Design of optimization and test runs

The gene expression datasets we optimize on, the training datasets, are adapted

from schematic results described in the experimental literature9;10;11; they spec-

ify the initial pattern of concentrations of the gene products, i.e. the proneural

clusters, and the desired �nal pattern when the proneural clusters have re-

solved to single cells expressing the proneural gene at high levels; it is left to

the optimization to �nd the right model parameters so that the system de-

velops from the initial state to the desired �nal one (see Fig. 1). All cells



in a proneural cluster have initially the same gene expression levels. The size

and cluster arrangement of the training datasets do not have any particular

biological signi�cance; the datasets have been designed in such a way as to

keep the number of cells low while including as many 7-cell symmetrical clus-

ters as possible, since optimization is very expensive computationally and so

optimization runs on datasets with more cells than we have used would be

impractical: it could take more than a week on an IBM PowerPC or an SGI

Indigo and might also get stuck at a greater number of bad local optima.

Apart from the training dataset illustrated in Fig. 1, in runs with cell

delamination we have used another identical dataset (not shown) which addi-

tionally contains information about the delamination of the cells at the desired

�nal state, when the prospective neuroblasts have fully delaminated, while all

the other cells are in their initial positions in the epithelium.

Initial Final

Figure 1: Cells are modeled as cylinders in a hexagonal lattice (viewed here from above).
Gene expression is represented by disks, proneural expression in dark gray and epithelial in
mediumgray; disk radius is proportional to level of expression. This �gure shows the training
dataset: on the left, the initial concentrations of the gene products| there is only proneural
gene expression in three symmetrical clusters; on the right, the desired �nal pattern of gene
expression | proneural expression is retained only in the central cell of each cluster, the

future neuroblast or SOP, whereas all other cells express the epithelial gene.

We have mainly focused on optimizing gene interaction strengths, i.e. the

T and T̂ matrices of Eq. 1, and not so much other parameters of the model.

An illustration of the optimization run designs we have used appears below;

there are �ve optimized parameters, four of them for gene interaction strengths

within a cell and one for a gene interaction across cells; columns in these ma-

trices are for input genes and rows for genes a�ected (empty boxes signify zero



interaction strength. i.e. no interaction):

Intracellular Interactions

Proneural Epithelial

Proneural 0:283 �0:015

Epithelial �0:555 9:74

Lateral Signalling Interactions

Proneural Epithelial

Proneural �10:1

Epithelial

The simulation corresponding to the solution above appears in Fig. 2.

We have tried to limit the number of parameters we optimize on, in order to

avoid over�tting our rather small datasets. Successful optimization runs have

yielded solutions that not only perform well on the training datasets but also

work for larger test datasets similar to the training ones but with a greater

number of 7-cell symmetrical clusters in various spatial arrangements (not

shown). This indicates that optimization does not just �nd parameter values

that only work for the speci�c size and cluster arrangement of the training

dataset, but rather extracts rules for resolving clusters.

Since optimization on various sets of model parameters leads to solutions

that work well on the training dataset, in order to further evaluate these so-

lutions and determine which are robust and can best describe the biological

system under consideration, we have also run these solutions on test datasets

to see how they perform on novel proneural clusters. Test datasets may of

course contain many more cells than training ones (since we do not optimize

on them), so we have used datasets with several clusters of various shapes and

sizes like the one in Fig. 3. The test datasets could in principle have been used

as training datasets, if it were not for the practical considerations mentioned

above. Test runs have provided suggestions about the roles of di�erent model

parameters.

3.2 Lateral interactions and cell delamination

Our results show that cell-cell interactions involving just the immediate neigh-

borhood of any given cell can bring about cluster resolution, without the need

of other longer range processes like di�usion, i.e. lateral signalling interactions

are su�cient for cluster resolution. They also appear to be crucial for cluster

resolution, since optimization has not come up with any solutions, when lateral

interactions are not included and the proneural cluster cells are all equivalent;

only when prospective neuroblasts or SOPs are marked with di�erences in gene

expression levels, does optimization �nd solutions that do not require lateral

signalling. Moreover, for some solutions, like the one in Fig. 2, when lateral

interactions are abolished, then clusters do not resolve but all cells in them

retain proneural gene expression. This parallels the e�ect of the so called neu-



rogenic mutations in the real biological system; these mutations disrupt lateral

communication between cells and lead to overproduction of neurons3;4.

Which lateral signalling interactions are allowed also plays an important

role in whether optimization can �t the training dataset in a satisfactory way

or not. For example, if no Epithelial-to-Proneural or Epithelial-to-Epithelial

lateral signalling interactions are allowed (i.e. if both entries in the right col-

umn of the of the lateral signallingmatrix are zero), then our optimization runs

on the remaining interaction strengths have not produced values that lead to

cluster resolution | and of course the same is true when no lateral interactions

at all are allowed; whereas, if only the Epithelial-to-Proneural interaction of

the lateral matrix is allowed, with the same total number of optimized parame-

ters, then optimization can readily yield values leading to cluster resolution (as

mentioned above and shown in Fig. 2). This suggests that some lateral gene

interactions are more important than others in producing cluster resolution.

If all four lateral signalling interactions are allowed, then, apart from �tting

the training data with the 7-cell symmetrical clusters, optimization solutions

can successfully resolve bigger or smaller asymmetrical clusters in test datasets

(not shown), even though, as mentioned above, some of these interactions are

not necessary for the resolution of training dataset clusters. This suggests that,

although Proneural-to-Proneural and Proneural-to-Epithelial lateral interac-

tions may not be su�cient on their own to bring about cluster resolution, they

may still enable lateral signalling to resolve a larger range of cluster shapes.

Very large clusters, like the one on the right in Fig. 3, still do not resolve.

If the delamination parameters are optimized on together with four lateral

signalling and four intracellular gene interaction parameters, then optimization

solutions like the one in Fig. 3 can resolve an even larger variety of shapes

and sizes of clusters in test datasets, that cannot be resolved readily without

delamination; however, if lateral interactions in the solution of Fig. 3 are

abolished, all cluster cells loose proneural gene expression, unlike what happens

with the solution of Fig. 2.

3.3 Dynamics of cluster resolution

The degree of encirclement of a cell in a proneural cluster by other cells in

the cluster can determine which cell becomes the neuroblast or SOP, as is

shown in Figs. 2 and 3. Smaller clusters generally resolve faster than larger

ones and proneural and epithelial gene expression changes at di�erent rates

depending on cell position in a cluster, even for cells that adopt the same

fate. Furthermore, from simulations both with and without cell delamination,

it becomes apparent that lateral e�ects propagate further than one cell, as



t = 1 t = 35 t = 52

t = 86 t = 103 t = 137

Figure 2: Computer simulation of neuroblast and SOP di�erentiation in a two-gene

model. From left to right and from top to bottom, di�erent time frames of the

evolution of gene product concentrations. In the initial state, clusters of cells express

the same amount of proneural protein. As the run proceeds, the concentration of

epithelial protein rises in most cells, except for the segregating neuroblasts and SOPs,

which retain high levels of proneural protein. Light gray indicates overlap of proneural

and epithelial proteins; other conventions as in Fig. 1.

is indicated by the fact that gene expression in a group, for instance, of �ve

cells changes in a particular way when this group of cells is a separate cluster

(in this case one cell from the group becomes a neuroblast) and in a di�erent

way when such a group is part of a bigger cluster (when all cells in the group

may adopt the epithelial fate); see Fig. 3. It is also interesting to note, that

in all the simulations we have run, irrespective of the number of optimized

interaction strengths, clusters of four equivalent cells do not resolve but all

cells in the cluster remain epithelial. These observations are predictions of the

model, since they have not been built into the model in any way.

In order to further study the dynamics of cluster resolution in our sim-

ulations, we have sketched the phase portraits, at successive points in time,

of solutions obtained through optimization. For each point in time, we have



t = 21 t = 81

t = 121 t = 161

Figure 3: Simulation with cell delamination and full lateral interactions. Same conventions
as in Fig. 2, with the addition that cell delamination is represented by the thicker inner
circle in the middle of the cells; the greater the radius of this circle, the further a cell has

delaminated. Note that the large cluster on the right resolves successfully.



plotted the direction and magnitude of the change in gene product levels in

a particular cell, given any value for the current product levels (see Fig. 4).

This essentially shows how a cell would respond (in terms of modulation of its

gene expression) if we altered (increased or decreased) the levels of its gene

products. If there are no lateral interactions the phase portrait of proneural

versus epithelial gene expression levels does not change, of course, over time

and is the same for all cells. By contrast, when there are lateral interactions,

each cell has a di�erent phase portrait that changes in time, depending on cell

position (as in the example of Fig. 4). The phase portrait can be thought to

represent the epigenetic landscape that each cell �nds itself in; this is a dy-

namic landscape that changes depending on the strength of lateral interactions

(as well as on the geometry of the tissue and on intracellular interactions).

4 Discussion

4.1 Implications of the model

In this work we have applied the framework developed in Mjolsness et al.5

to model early neurogenesis in Drosophila. Previous models of this process

have looked at how neuroblasts or SOPs might emerge from homogeneous

epithelia either through long range interactions, like di�usion of a substance12,

or through lateral inhibition13;14; these models have used a di�erent approach

from ours, in that they have only considered cell-cell interactions and have not

explicitly included regulatory gene interactions or attempted to model known

patterns of gene expression.

Despite the relative simplicity of our model, the simulations described in

this paper have allowed us to look closer at questions like the role of lateral sig-

nalling and cell delamination in neuroblast and SOP di�erentiation and have

provided a tool to study the dynamics of proneural cluster resolution. Opti-

mization of parameters in the model to �t schematic gene expression datasets

has come up with solutions that are also robust to perturbations, e.g. can

resolve novel clusters of di�erent sizes and shapes.

Our simulations have allowed us to conclude that lateral interactions with

only the immediate neighborhood of a cell are su�cient for cluster resolution;

that, when proneural cluster cells are equivalent, such interactions are impor-

tant for cluster resolution; that di�erent lateral interactions may have di�erent

roles in bringing about cluster resolution; and that lateral e�ects can propagate

further than a cell's immediate neighborhood through a cell-to-cell relay.

The model has produced further predictions about how cluster resolution

proceeds: smaller clusters generally resolve faster than larger ones; gene ex-
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Figure 4: Phase-portraits in the Epithelial-vs-Proneural plane for two cells from the same 7-
cell symmetrical cluster at three successive stages in time; this is from a simulation with cell
delamination and full lateral interactions. The dots indicate the trajectory of the cell. Top
row: phase-portraits for a cell at the cluster periphery; the cell starts at high proneural and
low epithelial levels in the left-most panel but soon the dynamic landscape changes and forces

the cell to move to the epithelial attractor towards the top left in the following panels; note
that by the time-point of the middle panel the cell is destined to the epithelial fate despite

its almost zero epithelial gene expression levels, since, even if its proneural gene expression
level were almost doubled at this point, it would still move towards the epithelial attractor.
Bottom row: phase-portraits for a cell at the cluster center; this cell starts at the same point

in the phase plane as the peripheral cell in the top row, but the phase-portrait at the start
already looks di�erent from that of the peripheral cell and changes in a di�erent way over

time; note that even a small increase in epithelial expression would push this cell towards
the epithelial attractor to the left, otherwise the cell moves towards the neural attractor to

the bottom right.



pression changes at di�erent rates depending on cell position in the proneural

cluster, even for cells that will eventually adopt the same fate; the degree of

encirclement of a cell in a proneural cluster by other cluster cells can specify

which cell becomes the neuroblast or SOP (namely the most encircled cell),

especially in smaller clusters. The analysis of gene interaction dynamics is also

a source of very speci�c and quantitative predictions about how cells would re-

spond to externally imposed changes in their gene product levels; for example,

such analysis can show that a cell may be strongly committed to a particular

fate even when its gene expression levels provide no indication of that (see Fig.

4); such predictions are now testable in Drosophila where manipulation of gene

expression in individual cells is possible15.

The results of the simulations have not provided clear answers about the

role of cell delamination; although delamination does seem to facilitate the

resolution of large clusters, abolishing lateral interactions in solutions that in-

clude delamination does not lead to all cells in a cluster retaining proneural

gene expression (the neurogenic phenotype), as would be expected from ex-

perimental observations. However, our results do indicate that modulation of

the strength of lateral, cell-cell interactions, either through delamination or

perhaps through changes in the activity of cell-membrane signalling molecules,

can be crucial for cluster resolution.

Experimental testing of the various predictions of the model as well as

further �ts to more quantitative datasets of higher temporal resolution will help

us determine which sets of model parameters are more biologically plausible

and better suited for modeling neurogenesis in Drosophila.

4.2 Model extensions and further considerations

An obvious way to extend this model is to include more genes in the regulatory

circuit. A speci�c extension would be to focus on how lateral signalling is

mediated: introducing gene products at the cell membrane, like receptors and

ligands, in order to gate gene interactions across cells, would be biologically

more realistic, since Notch, a receptor, and Delta, its ligand, are known to

mediate lateral communication in the biological system16; this would produce

more detailed predictions about the functions of lateral signalling.

The kinds of questions that can be posed with the model described in

this paper are not only of relevance to neurogenesis in Drosophila but are

common to many developing organisms, especially in view of the fact that ho-

mologues to genes involved in Drosophila neurogenesis have been isolated in

many species from worms to mammals participating in a variety of develop-

mental processes16;17. In vertebrate neurogenesis such homologues act in ways



similar to those of the Drosophila genes to regulate the number of neurons

generated; one would therefore expect that a theoretical and empirical under-

standing of Drosophila neurogenesis would provide insights into neurogenesis

in higher vertebrates.

A limitation of the approach described in this paper may be the �tting

method used: stochastic optimization methods available (like the simulated

annealing one we have used) do not guarantee convergence to a global optimum

in reasonably short amounts of time, and so our approach may not readily scale

up to much larger numbers of optimized parameters. However, issues in global

optimization are the object of intense study because of their importance in

diverse problems in science and engineering, and therefore it is still possible

that faster methods will become available.
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