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The discovery of any new gene requires an analysis of the expression context for
that gene. Now that the cDNA and genomic sequencing projects are progressing
at such a rapid rate, high throughput gene expression screening approaches are
beginning to appear to take advantage of that data. We present a strategy for the
analysis for large-scale quantitative gene expression measurement data from time
course experiments. Our approach takes advantage of cluster analysis and
graphical visualization methods to reveal correlated patterns of gene expression
from time series data. The coherence of these patterns suggests an order that
conforms to a notion of shared pathways and control processes that can be
experimentally verified.

Genetic networks and large scale gene expression mapping

With the advent of the Human Genome Project and other genome
sequencing efforts, we are now faced with the challenge of developing a functional
genomics and new methods of data analysis. Molecular biology has traditionally
focused on the study of individual genes considered in isolation as a method for
determining gene function. In order to determine the principles underlying complex
biological processes, such as development, however, we must also examine the
expression patterns of large numbers of genes in parallel, taking into consideration
temporal, as well as anatomical, patterns. Large-scale temporal gene expression
patterns may provide a means for inferring causal links between genes expressed
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over the course of phenotypic change. Statistical and information theoretic measures
may be useful for the analysis of such data.

Toward that end, Wen et al. (1) have generated a limited gene expression
matrix for rat cervical spinal cord. Using a reverse-transcription polymerase chain
reaction (RT-PCR) protocol (2), they have assayed the expression  of 112 genes
(mRNA levels; normalized to maximal expression level) over nine developmental
time points (E11, E13, E15, E18, E21, P0, P7, P14, and P90 or adult;
E=embryonic, P=postnatal). Included in the list are genes considered important in
CNS (central nervous system) development covering major gene families:

♦ neurotransmitter metabolizing and synthesizing enzymes, relating to
− GABA
− acetylcholine
− catecholamines
− nitric oxide

♦ ionotropic neurotransmitter receptors
− GABAA receptors
− NMDA receptors
− nicotinic acetylcholine receptors
− 5HT [serotonin] receptors

♦ metabotropic neurotransmitter receptors
− metabotropic glutamate receptors
− muscarinic acetylcholine receptors
− 5HT [serotonin] receptors

♦ neurotrophins and their receptors
♦ heparin-binding growth factors and their receptors
♦ insulin and insulin-like growth factor (IGF) family and their receptors
♦ intracellular calcium channels / receptors (IP3 receptors)
♦ cell cycle proteins
♦ transcriptional regulatory factors
♦ novel genes or expressed sequence tags (ESTs)
♦ housekeeping genes

We included genes for established “neuroglial marker” proteins as well, in order to
correlate expression time series to phenotypic differentiation.

We have conceptualized these genes as participants in a genetic network.
Theoretical studies of genetic networks, such as Boolean network models (3, 4), are
helping us to grasp the principles of complex dynamics and to develop and test
analytical tools for inference of genetic networks from gene expression data (5, 6).
Here, we present two clustering methods for analyzing this collection of 9 x 112
data points. These methods represent a first step toward determining an interaction or
“wiring” diagram for the genetic network of the developing mammalian CNS.
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Principles of clustering based on euclidean and mutual information
distance matrices

Gene expression data from RT/PCR experiments (1, 2) serve as the basis
for the analysis conducted below. We clustered genes according to their patterns of
expression over the nine developmental time points using the FITCH software (7)
and the euclidean distance measure. The FITCH software, while developed for
reconstruction of phylogenetic trees, is essentially a general clustering program. We
have compared the performance of FITCH to other standard clustering algorithms
using this data set. We found that its performance was best with respect to
conserving known similarities in gene expression patterns, although its scalability
is limited but sufficient in this particular case. The euclidean distance measure
quantitates the differences between expression histories of pairs of genes. The
euclidean distance between a pair of points is simply the square root of the sum of
the squared distances in each dimension. We determined the euclidean distance of the
combined, 17 dimensional vector of 9 expression values (ranging between 0 and 1)
and 8 slopes (ranging between -1 and +1; slopes were calculated based on a reduced
time interval of 1, not taking into account the variable measurement intervals). We
chose to include slopes to take into account offset but parallel trajectories. The pair-
wise distances were entered into a 112 gene x 112 gene distance matrix, which
served as the input for the FITCH clustering program. We used the default
parameters for FITCH, except for setting the P parameter to zero, required for
implementing the least squares method appropriate for data with expected linearly
proportional error.

As a second, further-reaching distance measure, we used the concept of
mutual information (8, 9, 10), also referred to as rate of transmission, which
quantifies the reduction in the uncertainty of one random variable given knowledge
about another random variable. In our case, we used normalized mutual information
as a measure of the extent to which knowledge about the expression levels of one
gene reduces the uncertainty about the expression levels of another given gene. In
order to calculate the information entropy of each gene expression sequence, the

Figure 1 (see previous page). Clustering trees. All genes shown were clustered as
described in the text over the nine time points, embryonic days 11, 13, 15, 18, 21, and
postnatal days 0, 7, 14, and 90. For both trees, common branch points indicate close
correlations in expression patterns among the genes. (A) Euclidean distance tree. Genes
cluster into five basic expression patterns (waves 1 through 4 and constant). For each
cluster, the average expression pattern for all genes in the cluster is shown as an inset.
(B) Mutual information tree (based on normalized mutual information distance measure).
Since calculations were based on pair-wise comparisons between expression levels at
multiple time points, both trees are somewhat distorted, being two-dimensional
projections of multi-dimensional maps; therefore, line lengths in this figure do not
accurately reflect degrees of correlation between distant expression patterns.
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continuous data was transformed by binning the expression levels into three discrete,
equidistant levels for statistical purposes. The 9 measurement time points can allow
for no more than 9 co-expression levels; clearly, more data will be required to
generate robust binning. We present this approach mainly to demonstrate the
essence of our methodology. The information entropy, H, of each gene expression
series, I, was calculated from the probabilities, P(i), of the occurrence of one of the
three expression levels over the nine measurement points:

 H(I) = -∑[P(i)*logP(i)].
The joint entropy for each gene expression pair, H(I,J), was calculated analogously:

H(I,J) = - ∑[P(i,j)*logP(i,j)].
The mutual information of each pair, M(I,J), was determined according to the
following definition:

M(I,J) = H(I)+H(J)-H(I,J).
Since the degree of mutual information is dependent on how much entropy is carried
by each gene expression sequence, a gene expression sequence pair exhibiting low
information entropies will also have low M, even if they are completely correlated.
Therefore, we normalized M to the maximal entropy of each of the contributing
sequences (numerical range: 0-1), giving a high value for highly correlated
sequences, independent of the individual entropies:

Mnorm = M(i,j) / max [H(i), H(j)].
We used 1- Mnorm as a distance measure for the distance matrix used for clustering,
since maximal coherence must correspond to minimal distance. Normalized mutual
information may also be expressed in terms of conditional entropies:

Mnorm = max [H(I|J)/H(I), H(J|I)/H(J)].
Unlike euclidean distance, this method also recognizes negatively and non-linearly
correlated data sets as proximal.

Analysis of developmental gene expression trajectories

One may conjecture that genes which a) share common control inputs, b) operate
together (e.g. proteins that are part of a metabolic or signaling pathway or signaling
network), or c) are members of the same gene sequence family, might be regulated
in a largely parallel fashion. A goal of this work is to determine whether genes
within these categories exhibit overlapping mRNA expression trajectories or control
patterns. Examination of trajectories in Boolean network models shows a good
correspondence between clusters of expression time series and overlapping regulatory
inputs (5).
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F igure 2 . Groupings of developmental gene expression time series. Cluster mean
patterns are shown in top panel. Individual data series are shown in remaining panels.
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According to the euclidean distance measure, which we used to capture
positive correlations between temporal gene expression patterns, the genes cluster
into four major waves of expression and a largely invariant group (Fig. 1). The
members of each wave may share inputs from other genes in the genetic network.
Wave 1, characterized by high levels of expression occurring only during early
developmental stages in 27 genes (E11-E15), includes members of diverse gene
families (Fig. 1). Two novel genes, SC6 and SC7, closely cluster to individual
members of wave 1, providing a context for their possible roles in terms of
functional kinship to known genes. Genes in waves 2 (20 genes) and 3 (21 genes)
steeply increase from E13 to E15, and E15 to E18, respectively. Interestingly, the
members of wave 2 remain at their plateau expression level at the completion of
development, while for wave 3 we generally observe a pattern of transient
overexpression. Both waves 2 and 3 are notably confined to neurotransmitter
signaling. Finally, wave 4 (17 genes) clusters genes that primarily increase during
postnatal development, belonging to several functional families. Twenty-one genes
showing largely constant expression (constant group) originate from diverse
families, however, strictly excluding the neurotransmitter signaling genes and neuro-
glial markers.

Comparison of the developmental expression time series for the GABA,
nicotinic and muscarinic acetylcholine, and glutamate receptor genes with the
phylogenetic trees for these gene families reveals a poor correlation between
phylogeny and ontogenetic expression patterns (the same also applies to the data on
peptide signaling gene families studied here). This suggests that sequence
homologies within gene families are not tightly coupled to the timing of gene
regulation over the course of development.

Interestingly, tyrosine hydroxylase (TH), insulin 1 (Ins1), and insulin-like
growth factor II (IGFII), which are located on the same human cytogenetic band,
11p15.5 (11), are closely clustered in euclidean distance wave 1. Further, TH and
IGFII are in the same subcluster (Fig. 1, a). TH, Ins2, and IGFII are also in close
proximity to one another on mouse chromosome 7 (12). This suggests that the
expression of some genes may be regulated in parallel due to their proximity on the
chromosome.

We used mutual information to capture any correlations (positive, negative
and non-linear) between expression time series.  Since some genes may share
inputs, but respond differently to those inputs, only mutual information is able to
identify their coordinated changes in an unbiased fashion. The tree of normalized
mutual information clusters (Fig. 1, b) therefore captures potential functional
relationships between genes that partially overlap with, but also go beyond those
suggested by euclidean clustering.
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Figure 3 .  Residuals of individual expression patterns with respect to cluster mean.
Cluster mean is subtracted from each gene expression time series. The remainders are
plotted to provide a measure of how well the cluster method worked.
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The quality of the clustering according to the euclidean distance measure is
examined in Fig 2. In this figure, the average gene expression pattern for each
cluster is shown in the top panel. The expression time series for each gene family
are shown below each cluster. The graph shows all of the measured gene expression
patterns, and reflects the range of patterns captured in each cluster. The tightest
pattern overlap is found in waves 2 and 3, while wave 1, wave 4 and the constant
groups are more diverse. However, compact subclusters (small branches) within the
limbs of the euclidean tree (Fig. 1, a) expectedly correspond to highly overlapping
trajectories (Fig. 2). It is interesting to note that some of the tightest groupings can
be found in particular combinations of gene family and expression cluster, e.g.
Marker, NME and GABA-R with wave 2, GluR and 5HTR with wave 3.

To allow a better assessment of clustering quality, we plotted the cluster
residuals for all groups (Fig. 3). Residuals are calculated by subtracting each
expression pattern from the mean pattern of each cluster. This normalizes the
distance from each point, allowing the eye to judge variations without the bias of
the absolute expression levels. This representation highlights the cluster tightness
in waves 2 and 3.

The functional groups of genes listed in Figure 2 are mapped onto their
corresponding expression clusters as determined by euclidean distance and normalized
mutual information in Fig. 4. The neurotransmitter signaling genes map primarily
to euclidean distance cluster waves 2 and 3, and to mutual information clusters 2
and 4. Similarly, peptide signaling genes map mainly to euclidean distance
clusters C (constant) and wave 1, and to mutual information clusters 1 and 6.

The coherence of the ionotropic and metabotropic neurotransmitter receptor
gene expression patterns is not a trivial observation. Since metabotropic
neurotransmitter receptors are more closely related to peptide receptors than to
ionotropic receptors in terms of sequence kinship, one could easily have expected
highly parallel expression patterns for metabotropic neurotransmitter receptors and
peptide receptors. We conclude from this analysis that receptor ligand class plays a
more important role in determining expression patterns than gene sequence
homology.

These two distinct clustering methods have a high degree of
correspondence, as shown in the central horizontal band of Figure 4, where the
euclidean distance clusters are mapped to the mutual information clusters. Many
elements of wave 1 and wave 4 map to mutual information cluster 6, as would be
expected for anti-parallel gene expression series. That is,  a set of the wave 1 genes
have a temporal relationship to a set of the wave 4 gene that suggest a common
control process. This suggests that some collection of these genes may be
participating in a common functional pathway. Fluctuations within the largely
“constant” euclidean cluster suffice for mutual information to capture correlations
between gene expression time series in this group, mapping them to mutual
information clusters 1 and 5.
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Figure 4 .  Cluster connectivity. Each line represents an individual gene. Lines
converging on a point indicate a cluster of genes with a common property. Genes
grouped according to function (top and bottom labels) are mapped to expression clusters
of the euclidean distance and mutual information trees. Different colors or shades of gray
correspond to the specific functional groups of genes listed at the top and bottom of the
diagram, and each line corresponds to a specific gene. Clusters are numbered as in
Fig. (1). For a color representation of this plot, please see:
http://rsb.info.nih.gov/mol-physiol/PSB98/Clustering.html.
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Concluding Remarks

New methods for the analysis of large-scale gene expression data will be
necessary for the study of functional genomics. This will involve conceptualizing
genomes as sources of information which govern development and other patterns of
phenotypic change. From this perspective we hope to gain a greater understanding of
the principles underlying complex biological processes.

The euclidean distance cluster analysis captures the kinetic styles of
patterns of gene expression. It is remarkable that we only observe six general
patterns. This is reminiscent of Turing’s observation that there were only six
mathematical formulations needed to describe the chemical basis of morphogenesis
(13). We are equally reminded Lindenmayer’s observation of six basic grammars or
algorithms to describe branching processes in Anabena (14). While we do not want
to draw attention to this numerological correspondence, it is important that there are
a small number of general control processes that appear to be in operation in all of
these cases. From other experiments it appears that six clusters are not a maximum
set of kinetic of control patterns (data not shown).

Theoretically, the determination of a gene expression matrix could be
expanded to include all known genes for any organism. But, that will require some
advances in technology to accomplish. However, an incomplete gene expression
matrix is sufficient to begin forming hypotheses concerning the regulation of
developmental events as reflected in specific gene clusters. Observations of coherent
expression behavior suggest common control processes in operation for groups of
genes. There is yet insufficient data to adequately characterize the shared control
mechanisms implied by the euclidean and mutual information analysis. However,
the present analysis does help direct one’s attention to a specific set of genes for
further investigation. The constraints that cluster analysis places on potential
interactions among genes could be incorporated into algorithms designed for
exhaustive reverse engineering of genetic networks (5, 6). We intend to integrate and
refine these methods also by analyzing simulated control networks that generate this
same style of time series data.

We anticipate that further progress in data acquisition and level-by-level
inferential analysis will contribute to the goal of reliable predictive modeling of
complex biomolecular networks. Attainment of such predictive capacity will
obviously play an important role in our understanding of diseases, therapeutic
targeting and drug design, and potential re-engineering of small organisms.
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