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Calcium (Ca2+) is an ubiquitous intracellular messenger which regulates cellular

processes, such as secretion, contraction, and cell proliferation 1;2. A variety of cell

types respond to hormonal stimuli with periodic oscillations of the intracellular free

Ca2+ concentration ([Ca2+]i) which can be modulated in their frequency in a dose-

dependent manner. The period of these well-studied oscillations varies normally

between 30 sec and a couple of minutes. Here we study [Ca2+]i oscillations in clonal

� cells (hamster insulin secreting cells, HIT) under pharmacological stimulation.

Besides the well-known high-amplitude low frequency oscillations we try to analyze

for the �rst time low-amplitude high frequency oscillations of [Ca2+]i under phar-

macological stimulation which have not been explored in experimental approaches

to date. Using coarse-grained entropy rates computed from information-theoretic

functionals we demonstrate di�erences in temporal complexity of the fast low-

amplitude [Ca2+]i dynamics corresponding to di�erent phases of pharmacological

stimulation which are additional to the well-known dose-dependent pattern of low-

frequency high amplitude [Ca2+]i dynamics.

1 Introduction

Consider a complex, dynamic process evolving in time. A series of measure-
ments done on such a system in consecutive instants of time t = 1; 2; : : : is
usually called a time series fy(t)g. Consider further that the temporal evolu-
tion of the studied system is not completely random, i.e., that the state of the
system in time t in some way depends on the state in which the system was
in time t� � . The strength of such a dependence per a unit time delay � , or,
inversely, a rate at which the system \forgets" information about its previous
states, can be an important quantitative characterization of temporal complex-
ity in the system's evolution. The time series fy(t)g, which is a recording of (a
part of) the system temporal evolution, can be considered as a realization of
a stochastic process, i.e., a sequence of stochastic variables. Uncertainty in a
stochastic variable is measured by its entropy. The rate in which the stochastic
process \produces" uncertainty is measured by its entropy rate. The concept



of entropy rates is common to the theory of stochastic processes as well as
to the information theory where the entropy rates are used to characterize
information production by information sources 3.

Alternatively, the time series fy(t)g can be considered as a projection of
a trajectory of a dynamical system, evolving in some measurable state space.
A. N. Kolmogorov, who introduced the theoretical concept of classi�cation
of dynamical systems by information rates 4, was inspired by the information
theory and generalized the notion of the entropy of an information source 4;5;8.
The Kolmogorov-Sinai entropy (KSE) 5;6;7;8 is a topological invariant, suitable
for classi�cation of dynamical systems or their states, and is related to the sum
of the system's positive Lyapunov exponents (LE) according to the theorem of
Pesin 9.

Thus, the concept of entropy rates is common to theories based on philo-
sophically opposite assumptions (randomness vs. determinism) and is ideally
applicable for characterization of complex biological processes, where possible
deterministic rules are always accompanied by random in
uences.

In this paper we demonstrate an application of so-called coarse-grained
entropy rates for the characterization and segmentation of high-frequency os-
cillations of intracellular Ca2+ ([Ca2+]i) in clonal � cells (insulin secreting
hamster cells) induced by a hormonal agonist (arginin-vasopressin, AVP) and
synergistically activated by increasing doses of an additional agonist (tolbu-
tamide).

2 Information-Theoretic Functionals and Entropy Rates

Consider n discrete random variablesX1; : : : ; Xn with sets of values �1; : : : ;�n,
respectively. The probability distribution for an individual Xi is p(xi) =
PrfXi = xig, xi 2 �i. We denote the probability distribution function by
p(xi), rather than pXi(xi), for convenience. Analogously, the joint distri-
bution for the n variables X1; : : : ; Xn is p(x1; : : : ; xn) = Prf(X1; : : : ; Xn) =
(x1; : : : ; xn)g, (x1; : : : ; xn) 2 �1 � : : :� �n.

The marginal redundancy %(X1; : : : ; Xn�1;Xn), in the case of two vari-
ables also known as mutual information I(X1;X2), quanti�es the average
amount of information about the variable Xn, contained in the n � 1 vari-
ables X1; : : : ; Xn�1, and is de�ned as

%(X1; : : : ; Xn�1;Xn) =

X

x12�1

: : :
X

xn2�n

p(x1; : : : ; xn) log
p(x1; : : : ; xn)

p(x1; : : : ; xn�1)p(xn)
: (1)



Now, let fXig be a stochastic process, i.e., an indexed sequence of ran-
dom variables, characterized by the joint probability distribution function
p(x1; : : : ; xn) . The entropy rate of fXig is de�ned as

h = lim
n!1

1

n
H(X1; : : : ; Xn); (2)

where H(X1; : : : ; Xn) is the joint entropy of the n variables X1,: : :, Xn with
the joint distribution p(x1; : : : ; xn):

H(X1; : : : ; Xn) = �
X

x12�1

: : :
X

xn2�n

p(x1; : : : ; xn) log p(x1; : : : ; xn): (3)

A way from the entropy rate of a stochastic process to the Kolmogorov-
Sinai entropy (KSE) of a dynamical system can be straightforward due to the
fact that any stationary stochastic process correspond to a measure-preserving
dynamical system, and vice versa7. Then for the de�nitiona of the KSE we can
consider the equation (2), however, the variables Xi should be understood as
m-dimensional variables, according to a dimensionality of the dynamical sys-
tem. If the dynamical system is evolving in continuous (probability) measure
space, then any entropy depends on a partition � chosen to discretize the space
and the KSE is de�ned as a supremum over all �nite partitions 6;7;8.

Possibilities to compute the entropy rates from data are limited to a few
exceptional cases: for stochastic processes it is possible, e.g., for �nite-state
Markov chains 3. In the case of a dynamical system on continuous measure
space, the KSE can be, in principle, reliably estimated if the system is low-
dimensional and a large amount of (practically noise-free) data is available. In
such a case, Fraser 10 proposed to estimate the KSE of a dynamical system
from the asymptotic behavior of the marginal redundancy, computed from a
time series generated by the dynamical system. In such an application one
deals with a time series fy(t)g, considered as a realization of a stationary and
ergodic stochastic process fY (t)g. Then, due to ergodicity, the marginal redun-
dancy (1) can be estimated using time averages instead of ensemble averages,
and, the variables Xi are substituted as

Xi = y(t+ (i� 1)�): (4)

Due to stationarity the marginal redundancy

%n(�) � %(y(t); y(t+ �); : : : ; y(t+ (n� 2)�); y(t+ (n� 1)�)) (5)

aA more detailed and rigorous KSE de�nition can be found in monographs 6;7;8 or in the

paper of Palu�s 12 and references therein.



is a function of n and � , independent of t.

It was shown 10;11;12 that if the underlying dynamical system is m-dimen-
sional and the marginal redundancy %n(�) is estimated using a partition �ne
enough (to attain so-called generating partition 6;8;10), then the asymptotic
behavior

%n(�) � H1 � j� jh (6)

is attained for n = m+ 1;m+ 2; : : :, for some range of � . The constant H1 is
related to %n(0).

3 Coarse-Grained Entropy Rates

The equation (6) gives the relation between the asymptotic behaviour of the
information-theoretic functional { the marginal redundancy %n(�) estimated
from a time series, and the KSE of a dynamic system underlying the time
series. It was demonstrated 12;13 that for observation of the behaviour (6), a
large amount of data is necessary, which make possible to estimate a probabil-
ity distribution on a generating partition. In experimental practice, however,
the analyzed time series are usually short and contaminated by noise, so even
if they resulted from low-dimensional chaotic processes, estimation of their
KSE is practically impossible 12;13. And in many experiments, actual dynam-
ical mechanisms, underlying analyzed data, are unknown, and can be either
high-dimensional deterministic or stochastic. As we have pointed above, unlike
other dynamical characteristics (such as dimensions or Lyapunov exponents),
the entropy rates are meaningful quantities for characterization of stationary
processes irrespectively of their origin. The problem is, however, that the
exact entropy rate of a process usually cannot be estimated from experimen-
tal data. In order to utilize the concept of the entropy rates in time-series
analysis, Palu�s 13 has proposed to give up the e�ort for estimating the exact
entropy rates, and to de�ne \coarse-grained entropy rates" (CER's) instead.
The CER's are not meant as estimates of the exact entropy rates, but as quan-
tities which can depend on a particular experimental and numerical set-up,
however, quantities which have the same meaning as the exact entropy rates,
i.e., which can be used as measures of regularity and predictability of analyzed
time series in the relative sense: Two or several datasets can be compared
according to their regularity and predictability, providing they were measured
in the same experimental conditions and their CER's were estimated using the
same numerical parameters.



The most straightforward de�nition 13 of a CER can be based on (6):

h(0) =
%n(�0)� %n(�1)

�1 � �0
: (7)

Another type of a CER, providing equivalent characterization of systems,
but which might have better numerical properties, Palu�s 13 de�nes as follows:
In a particular application, we compute the marginal redundancies %n(�) for
all analyzed datasets and �nd such �max that for � 0 � �max: %n(� 0) � 0 for
all the datasets. Then we de�ne a norm of the marginal redundancy

jj%njj =

P�max
�=�0

%n(�)

�max � �0
: (8)

Having de�ned the norm jj%njj, the di�erence %n(�0) � jj%njj can be con-
sidered as the alternative de�nition of the CER. It has been found, however,
that the de�nition of the CER, which does not depend on absolute values of
%n(�), has better numerical properties, namely the estimates are more stable
and less in
uenced by noise. Thus, we de�ne the CER h(1) as

h(1) =
%n(�0)� jj%njj

jj%njj
: (9)

The ability of the CER's h(0), h(1) to discern systems with di�erent exact
entropy rates, in particular, to discern di�erent states of a chaotic system, is
illustrated in Fig. 1. For the well-known chaotic baker map 14, its KSE (or,
equivalently, the positive Lyapunov exponent, LE) can be expressed analyti-
cally as a function of the system's parameter � (Fig. 1a). Then time series for
di�erent values of � were generated and their CER's were computed and plot-
ted as functions of the parameter � (Fig. 1 b-g). Using time series of 16,384
samples, the CER's, especially h(1) provide distinction and classi�cation of
the states (with di�erent �) of the baker system equivalently to the analyt-
ically computed LE/KSE, i.e., the baker system's exact entropy rate. The
numerical stability of the CER estimates decreases with decreasing the length
of processed time series (Fig. 1 d-g). Similarly, the CER's discern stochastic
processes with di�erent entropy rates 13.
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Figure 1: (a) Positive Lyapunov exponent (or Kolmogorov-Sinai entropy) of the chaotic baker

map computed as the analytical function of the parameter �. (b{g) Coarse-grained entropy

rates h(0) (b,d,f), and h(1) (c,e,g); estimated using the series length N = 16; 384 (b,c),

N = 1; 024 (d,e), N = 256 (f,g), as functions of the parameter �, computed from ninety-

seven time series generated by the chaotic baker maps with the parameter � changing from

0.01 to 0.49.

4 Experimental Time Series of [Ca2+]i in Clonal �- Cells (HIT-

Cells)

4.1 Measurements of [Ca2+]i

HIT-T15 cells were kindly provided by W. Knepel (G�ottingen, Germany). To
measure [Ca2+]i HIT-cells were subcultured on glass coverslips. The cells were
loaded with 5 �M Fura-2/AM for 30 min. at 37�C. [Ca2+]i measurements
were done on cells of average size and healthy appearance. Fura-2 
uorescence
was recorded from a single cell using a dual excitation spectro
uorometer sys-
tem (Deltascan 4000, Photon Technology Instruments, Wedel, Germany). All
records have been corrected for auto
uorescence of unloaded cells at each wave-
length before the ratio was used. More details on the measurement of [Ca2+]i
can be found in Sch�o
 et al.15

4.2 Pharmacological Stimulation

Low-frequency high amplitude [Ca2+]i oscillations were induced by the ad-
ministration of 1 nM arginin-vasopressin (AVP). The frequency of the low-
frequency high amplitude [Ca2+]i oscillations was modulated by two di�erent



doses of tolbutamide (3 �M and 10 �M). Through the binding to the sul-
fonlyurea receptor (SUR) tolbutamide inhibits the ATP-sensitive K+ current
(IKATP

) thereby causing membrane depolarization and activation of Ca2+ in-

ux through voltage-dependent calcium channels (VDCC) in �-cells. For the
�rst 500 s only AVP was delivered to the HIT-cell to induce Ca2+ oscillations
followed by alternating phases of stimulation with tolbutamide and washout
phases (see the Legend of Fig. 2 for the exact segments of stimulation). Thus
we get [Ca2+]i time series with segments of di�erent dynamics depending on
the stimulation (Fig. 2).

5 The CER and Ca2+ Time Series

The basic idea how to characterize dynamical changes in a time series of Ca2+

oscillations is to compute a dynamical characteristic, in this case the CER
h(0) (or h(1)), in a window moving over the series (i.e., inside overlapping
segments of the series). The choice of the window length is usually problematic,
since the CER estimated from short series has high variance 13, while stable
estimates from longer windows could either miss a detection of a short-term
phenomenon, or could be in
uenced by possible non-stationarity of the series.
In the particular case of the [Ca2+]i time series (Fig. 2, the top panel) we
analyze �ve segments of di�erent dynamics, each of them longer than 500 s
(500 samples). Therefore, as the �rst choice we use the window of 512 samples.

The dynamics of the [Ca2+]i time series (Fig. 2, the top panel) is clearly
dominated by a high-amplitude low-frequency spiky activity, which is evidently
di�erent in segments with di�erent doses of tolbutamide stimulation and wash-
out phases respectively. Considering the time scale of the record, however,
these Ca2+ oscillations are too slow to extract any statistical/information-
theoretic characteristic from the available data. A formal application of the
CER's estimated in a moving window from the raw [Ca2+]i time series (Fig. 2,
the top panel) did not lead to distinction of segments of di�erent stimulation.
According to our expectation, the low frequency Ca2+ spikes cannot be suc-
cessfully characterized by this approach, and when analyzing Ca2+ dynamics
on shorter time scales, the spikes can be considered as nonstationarity which
e�ects the analysis and obscures a possible characterization.

Thus our approach focussed on the analysis of the low amplitude high
frequency Ca2+ oscillations. Let us look at the detailed picture of one of
the spikes (Fig. 2, the second panel from the top). Fast oscillations of small
amplitudes are apparent on the high-amplitude low frequency spiky dynamics.
Therefore we apply a simple high-pass �lter realized by subtraction of a three-
sample moving average from the raw [Ca2+]i time series. The resulting fast
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Figure 2: The top panel: Time series of [Ca2+]i in a single HIT cell sampled at the rate of

1 Hz. Large amplitude Ca2+ spikes were induced by the administration of 1 nM arginin-

vasopressin (AVP) in segment 1 (0 { 550 s). In the second segment (551 { 1550 s) 10 �M

tolbutamide were administered, followed by a washout phase without stimulation (segment

3, 1551 { 3100 s). The tolbutamide dose used in the 4th segment (3101 { 4100 s) was 3 �M.

In the 5th segment (4101 { 4800 s) the pharmacological stimulus was removed again. The

second panel from the top: Detailed plot of one of the peaks from the [Ca2+]i time series.

The third panel from the top: The same segment of the Ca2+ data as in the above panel,

but after using a moving-average high-pass �lter. The bottom panel: The same segment

of the Ca2+ data as in the second panel from the top, but after using the moving-average

high-pass �lter for the second time.

oscillations (Fig. 2, the third panel from the top) still contain some slower
phenomena due to the sharp beginning of the Ca2+ spike, which can be removed
by repeating the same �ltering (Fig. 2, the bottom panel, cf. the oscillations
around 2230 s in this and in the above panel). The whole [Ca2+]i time series
�ltered twice is plotted in the top panel of Figure 3. What is it, this fast
dynamics, noisy dynamics without any useful information, or a dynamical,
possibly nonlinear process, containing physiologically relevant information? In
a preliminary study, a test for nonlinearity 16 applied on di�erent segments of
the �ltered data yielded statistically signi�cant results (i.e., the null hypothesis
of a linear stochastic process has been rejected). Also, it seems that these
oscillations possess a property of nonlinear oscillators { a dependence between
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Figure 3: Top panel: The complete [Ca2+]i time series after twofold moving-average high-

pass �ltering. The second panel from the top: The CER h(0) (solid line) and h(1) (thin

dashed line) estimated in a moving 512-sample window from the above high-pass �ltered

[Ca2+]i series. A particular CER value for a window is plotted in the center of that window.

The third panel from the top: The CER h(0) estimated in a moving 64-sample window from

the above high-pass �ltered [Ca2+]i time series. The bottom panel: The 64-sample window

CER (above panel) smoothed by using 511-sample moving average.

instantaneous amplitude and frequency (the waves with lower amplitudes tend
to have longer periods). In this paper, however, we focus on the application
of the CER's estimated in a moving window as a tool for detecting segments
with di�erent temporal complexity. Considering the segments 2 { 5, the CER's
(especially h(0)), estimated in the 512-sample window (Fig. 3, the second panel
from the top) clearly distinguish the segments with (2, 4) and without (3, 5)
stimulation.

The CER h(0) computed in the 64-sample window (Fig. 3, the third panel
from the top) has a very high variance, which source is numerical, not physi-
ological (cf. Fig. 1 f,g). Smoothed results (Fig. 3, the bottom panel, i.e., the
64-sample window CER has been smoothed by using the 511-sample moving
average), however, distinguish the segments with (2, 4) and without stimula-
tion (3, 5) consistently with the results of the above 512-sample window CER.

Considering the question of a statistical signi�cance of the above result,



two di�erent aspects should be distinguished:
a) Are the di�erences between the CER's, obtained from segments with and
without stimulation, statistically signi�cant in general? In other words, is this
result a proof that the CER's can distinguish di�erent (stimulation-induced)
dynamical modes in the low amplitude high frequency Ca2+ oscillations? This
question cannot be answered considering the above single time-series measure-
ment. Although a formal application of a statistical test (such as the t-test) on
the values of the 512-sample window CER (Fig. 3, the second panel from the
top) would yield a signi�cant result, such testing approach would be improper,
since the CER values obtained from a moving window cannot be considered as
independent measurements. The only way to answer this question is process-
ing a set of independent time series, measured in the same conditions on a set
of di�erent cells.
b) Returning back to the above question about the nature of the low amplitude
high frequency Ca2+ oscillations, i.e., whether it is a noise without any use-
ful information, or a dynamic process, re
ecting the physiological conditions
(stimulation) in its temporal complexity, the latter has been found highly prob-
able. The �ltered Ca2+ series (Fig. 3, the top panel) has been tested against
null hypotheses of white noise with the same histogram and of coloured noise
with the same spectrum and histogram (using the so-called surrogate data ap-
proach 16), which have been rejected with a high statistical signi�cance. In
other words, the considered noises, which mimic some properties of the �l-
tered Ca2+ series, cannot produce such sharp changes in the CER values as
observed in Fig. 3, the second panel from the top. Thus the segmentation of
the series, obtained by the CER h(0), is due to stimulation-induced changes in
the temporal complexity of the low amplitude high frequency Ca2+ dynamics.

6 Conclusion

It is well established that large amplitude low-frequency oscillations of [Ca2+]i
are an ubiquitous phenomenon in a number of electrically excitable and non-
excitable cells 1;2. The interspike interval of these [Ca2+]i spikes with ampli-
tudes up to 1�M ranges between 30 sec and a couple of minutes. It has been
demonstrated that the frequency and the amplitude of these repetitive [Ca2+]i
spikes can be modulated in a dose-dependent manner upon stimulation with
an appropriate agonist. Although low amplitude fast [Ca2+]i oscillations with
[Ca2+]i amplitudes in the range of 5 nM to 10 nM have been observed in ex-
perimental [Ca2+]i time series under agonist stimulation, there has been no
focus on characterizing the nature of these fast oscillations. The question if
these fast oscillations carry any information beyond the information encoded



in the large amplitude low frequency [Ca2+]i spikes has not been addressed
yet. Our results indicate that the fast Ca2+ oscillations are nonlinear events
since they are signi�cantly di�erent from isospectral linear stochastic processes.
The deterministic nature of these oscillations is further supported since they are
modulated by pharmacological stimulation. This has been demonstrated in the
current study in clonal �-cells (HIT cells) using di�erent doses of tolbutamide
as stimuli. The coarse-grained entropy rates (CER's) which are computed
from information-theoretic functionals - redundancies, are relative measures
of regularity and predictability, and for data generated by dynamical systems
they are related to the Kolmogorov-Sinai entropy. The CER's which have
been demonstrated to be suitable for the classi�cation of complex experimen-
tal time series in biological systems 13 revealed considerable di�erences in the
temporal dynamics of the fast Ca2+ oscillations in segments with and without
stimulation by tolbutamide. Future studies of the functional relevance of these
fast deterministic Ca2+ oscillations will have to demonstrate which semantic
information they carry.
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Appendix - Estimation of the Marginal Redundancy

When the discrete variablesX1; : : : ; Xn are obtained from continuous variables
in a continuous probability space, then the redundancies %(X1; : : : ; Xn�1;Xn)
depend on a partition � chosen to discretize the space. Various strategies have
been proposed to de�ne an optimal partition for estimating redundancies of
continuous variables (see Refs. 11;12;16 and references therein). We have found
that satisfactory results can be obtained by using simple box-counting method
and by observing the following two rules:
a) The partition is de�ned by the marginal equiquantization method, i.e., the
marginal histogram bins are de�ned not equidistantly but so that there is ap-
proximately the same number of samples in each marginal bin.
b) The relation between the number Q of quantization levels (marginal bins)
and the e�ectiveb series length N in the computation of n-dimensional redun-

bIf a univariate series is used to construct a time-delay n-dimensional embedding (Eq. 4),

the e�ective series length N is N = N0 � (n� 1)� , where N0 is the total series length, n is

the embedding dimension, and � is the time delay.



dancy should be
N � Qn+1;

otherwise the results may be heavily biased 12;13.
This algorithm does not provide unbiased estimates of absolute values,

however, the absolute values of the redundancies are not important here. Ap-
plying this simple recipe and using the same parameters (N; n; Q and the
� -range), the redundancy estimator should bring consistent estimates in the
relative sense that the marginal redundancies %n(�) and, consequently, the
CER's, obtained from di�erent data/segments, are mutually comparable, and
the CER's provide the classi�cation of the data/segments equivalent to the
classi�cation given by the exact entropy rates 13.
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