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In a variety of cell types extracellular hormonal stimuli varying in time are trans-

fered across the cell membrane into repetitive spikes of the intracellular calcium

concentration ([Ca2+]i). Distinct temporal patterns of [Ca2+]i spikes are capable

of regulating the function and structure of target cells. Here, we investigate the

ability of transmembrane signaling to encode time-varying hormonal stimulations

(bandlimited Gaussian white noise) in a model of receptor-controlled [Ca2+]i oscil-

lations. The encoding of hormonal signals in [Ca2+]i spike trains is quanti�ed by

using an information-theoretic approach allowing to estimate the hormonal stimu-

lus from [Ca2+]i spike trains. Our results suggest that intracellular [Ca2+]i spike

trains convey faithful information on temporal variations of extracellular hormonal

concentrations at scales of 30{200 sec, corresponding to cut-o� frequencies between

5 and 30 mHz of the random hormonal stimulation.

1 Introduction

1.1 Information Transmission and Processing in Endocrine Systems

In biology information is transmitted over long distances by the nervous system
and the endocrine system. For endocrine signaling, a hormone secreted by a
cell is transported via the blood stream to distant target cells where it produces
a distinct response after binding to a speci�c receptor. The cellular response
upon binding of a hormonal ligand to its receptor is mediated by a variety
of intracellular second messenger pathways 1. The Ca2+�phosphatidylinositol
(PI) signaling pathway plays a major role in transmembrane signal transmis-
sion 2 for a large number of di�erent cell types. In this pathway hormonal
stimuli lead to the formation of inositol (1,4,5)�trisphosphate (IP3) which
triggers the release of Ca2+ from internal stores. Succeeding negative feedback
mechanisms lead to a fall of [Ca2+]i back to resting levels. The result are
repetitive [Ca2+]i transients varying in frequency and amplitude depending
on the strength and type of the hormonal stimulus. [Ca2+]i spike trains have
been demonstrated to allow for the di�erential regulation of distinct cellular re-



sponses 3, such as the activation of protein kinases 4 as well as the regulation of
transcription 5, di�erentiation 6, motility, and morphology 7. The generation of
[Ca2+]i oscillations has been studied experimentally and theoretically mostly
under constant hormonal stimulation. However, it has been demonstrated that
almost all hormones are secreted in a burstlike or pulsatile manner resulting
in a time-varying concentration in the blood stream 8;9.

Motivated by these results, Sch�o et al. 10 performed experiments in liver
cells which demonstrated the mapping of periodic time-varying hormonal stim-
uli with phenylephrine (an �1�adrenoreceptor agonist) into distinct temporal
patterns of [Ca2+]i spike trains. Furthermore, a modulation of the [Ca2+]i
spike amplitude by the frequency of the periodic hormonal stimulus could
be observed. Motivated by this study, Chay et al. 11 adapted a mathematical
model for receptor�controlled [Ca2+]i oscillations which had been numerically
studied only under constant agonist stimulation 12. This new model accounts
for most of the dynamical features observed in the experiments of Sch�o et

al. 10 such as blocked and delayed [Ca2+]i responses to the extracellular stim-
ulus. Transmembrane signaling in this model system has only been studied
experimentally 10 and numerically 11 using periodic stimuli, whereas in the
physiological situation secretory pulses and the resulting uctuations of hor-
mone concentration in the blood stream and tissue are usually not equally
spaced 8;13. Thus, we investigated numerically transmembrane signaling using
bandlimited Gaussian white noise stimuli in the model for receptor�controlled
[Ca2+]i oscillations proposed by Chay et al. 11. The objective of this study
was to quantitatively characterize the impact of transmembrane transduction
on the ow of time-varying information from the external hormonal signals to
the �nal e�ector systems of the cell.

1.2 Information Encoding in Sensory Neuronal Systems

This study was motivated by experimental and numerical studies on the infor-
mation ow in sensory neuronal systems 14�19 where the question of temporal

coding of information in spike trains has recently received renewed attention.
Most of the information in the arrival times of action potentials in the nervous
system is neglected when studying the mean �ring rate (mean rate coding) as
the relevant parameter characterizing the neuronal response. The basic idea of
temporal coding is that spike timing plays an important role in encoding various
aspects of the stimulus. This has been demonstrated in a number of di�erent
sensory systems 14;15;20�26. Thus temporal coding may be used to increase the
e�cacy of information transfer.



2 Methods

2.1 Receptor-Controlled Model for [Ca2+]i Oscillations

This study is based on the model proposed by Chay et al. 11 which assumes
that the receptor�controlled [Ca2+]i spikes are caused by the increase of acti-
vated guanosine-5'�triphosphate-(GTP) binding proteins (g�GTP) which in
combination with positive feedback processes and cooperative e�ects activates
phospholipase C (PLC). Activated PLC converts phosphatidylinositol(4,5){
bisphosphate (PtdIP2) into diacylgylcerol (DAG) and inositol (1,4,5)�trisphos{
phate (IP3) which triggers the release of Ca

2+ from the endoplasmic reticulum
(ER) by binding to the specialized tetrameric IP3 receptor in the ER mem-
brane. The level of cytosolic Ca2+ drops fast as Ca2+ is pumped back into
the ER. Numerical simulations of this model performed so far have used only
periodically delivered square pulses without assuming any randomness in the
stimulatory pattern. These pattern are far from the physiologically and patho-
physiologically observed dynamics of pulsatile hormone secretion 8;13. Thus we
used bandlimited Gaussian white noise stimuli as a �rst approximation to the
temporal variations occuring in natural patterns. The model of Chay et al.

comprises the simulation of phospholipase C (PLC), diacylgylcerol (DAG), and
G� �GTP time series to generate [Ca2+]i spike trains and is summarized by
the following equations:

d[G� �GTP ]

dt
= kg [G� �GDP ]� 4kp[G� �GTP ]4[PLC]

�hg[G� �GTP ]; (1)

d[DAG]

dt
= kd[PLC

�]� hd[DAG] + ld; (2)

d[Ca2+]i
dt

= �

�
kc

[IP3]
3

K3
s + [IP3]3

� hc[Ca
2+]i + lc

�
; (3)

d[PLC�]

dt
= kp[G� �GTP ]4[PLC]� hp[PLC

�]: (4)

Eq. 1 describes the change of [G��GTP ] due to the conversion of G��GDP to
G��GTP . In eq. 1, kg is equated to the time-varying agonist concentration11

(in units of sec�1). The three kinetic parameters kp; hp; kd are assumed to take
the following forms:

kn = k0n
[DAG]2

K2
D + [DAG]2

; (5)

where kn = kp, hp or kd and k0p = 2 x 10�7 nM�4 sec�1, h0p = 0.5 sec�1, k0d
= 700 sec�1. The remaining kinetic constants are KD = 25 nM and hg which



is set to 0.0 sec�1 in a �rst approximation. Eq. 2 models the change of DAG
and IP3 (hd = 100 sec�1, ld = 250 nM sec�1). For simplicity it is assumed
that [DAG] and [IP3] increase with the same rate. Eq. 3 describes the change
of intracellular calcium concentration [Ca2+]i (�kc = 9.0 x 104 nM sec�1 , Ks

= 300 nM, �hc = 1.0 sec�1, �lc = 200 nM sec�1). The �rst term in the curly
brackets models the release of Ca2+ from the endoplasmic reticulum (ER).
Eq. 4 models the formation of activated PLC (PLC�) from PLC through the
action of G� � GTP . The second term describes the loss of (PLC�) by the
hydrolysis of the complex to G� �GDP .

A qualitative explanation for the generation of [Ca2+]i spike trains in this
model is as follows: Ca2+ is released from intracellular Ca2+ stores (such as
the ER) when [G��GTP ] and thus [IP3] reaches a critical threshold level. The
Ca2+ response is blocked when [G� �GTP ] is too low and the agonist stimu-
lus is delivered prematurely. Each [Ca2+]i spike train, x(t), was simulated for
240,000 sec on a Sun SPARCstation 20 using source code written in MATLAB
(MathWorks Inc., Natick, MA). The system of di�erential equations was inte-
grated using a modi�ed Rosenbrock formula sti� solver (variable integration
time step). The stimulus, s(t)+smean, which corresponds to kg in the Chay et

al. model, was generated by low-pass �ltering uncorrelated zero�mean, unit
variance Gaussian white noise, and then rescaling this signal to the interval
[0 sec�1; 0:03 sec�1]. The average value of kg is smean = 0:015 sec�1. Fil-
tering was performed in the frequency domain, by setting Fourier coe�cients
above the desired cut-o� frequency, fc, of the stimulus, s(t), to zero. The
cut-o� frequency fc ranged from 3 mHz to 100 mHz.

In a second step we choose a �xed cut-o� frequency of 10 mHz and varied
the maximum stimulus amplitude between 0.015 to 0.060 sec�1 to investigate
the impact of increasing mean Ca2+ spike frequency on the coding perfor-
mance.

2.2 Stimulus Estimation from [Ca2+]i Spike Trains

The ability of neuronal spike trains to convey precise information about the
temporal dynamics of a random bandlimited stimulus, such as the hormonal
stimulation s(t) considered above, has been studied using information�theoretic
approaches. Methods from stochastic estimation theory 27;28 allow to compute
a temporal �lter h(t) that, when convolved with a spike train in response to
the stimulus, s(t), will produce an estimate sest(t) of s(t). Thus, part of the
temporal dynamics of the stimulus can be reconstructed from the spike train.
These stimulus reconstruction methods have been introduced into the �eld of



neuroscience by Bialek and collaborators to explore the information transmis-
sion by peripheral sensory neurons in a variety of preparations 14;29.

To estimate the information about time-varying hormonal concentration
encoded in [Ca2+]i spike trains in our simulations, we used the following stim-
ulus reconstruction algorithm 14;16;30.
Let

x(t) =
X
i

�(t� ti)� x0 (6)

be the [Ca2+]i spike train with the mean value, x0, subtracted. In eq. 6 the
ti's denote the occurence times of Ca2+ spikes in response to the Gaussian
stimulus, s(t). A linear estimate, sest(t), of the stimulus, s(t), given the spike
train, is calculated by convolving the [Ca2+]i spike train with a �lter, h(t):

sest(t) =

Z T

0

dt 0h(t� t0)x(t0): (7)

The �lter, h(t), is to be chosen in such a way as to minimize the mean square
error, �2, between the stimulus and estimate

�2 =
1

T

Z T

0

dt [s(t)� sest(t)]
2; (8)

where the integration is over the duration of the simulation (T = 240; 000 sec).
Solving for the �lter h(t) leads to

h(t) =

fcZ
�fc

df
Ssx(�f)

Sxx(f)
e�i2�ft: (9)

In this equation, fc is the cut�o� frequency of the stimulus, Ssx(f) represents
the Fourier transform of the cross-correlation between the stimulus and the
spike train and Sxx(f) the Fourier transform of the autocorrelation function of
the [Ca2+]i spike train. We de�ne the cross-correlation between the stimulus,
s(t), and the spike train, x(t), as

Rsx(�) =
1

T

Z T

0

dt s(t)x(t + �) (10)

and the autocorrelation function of the [Ca2+]i spike train, x(t), as

Rxx(�) =
1

T

Z T

0

dt x(t)x(t + �): (11)



The �lter, h(t), computed from eq. 9 is not causal in general in the sense
that h(t) 6= 0 for t > 0, i.e., the occurence of a spike can be used to predict
the future temporal dynamics of the stimulus (this is of course only possible
because of correlations in the stimulus and because of the response properties
of the simulated cell). Causality is usually implemented by introducing a time
delay into the reconstructions 14 or by applying a causal Wiener�Kolmogorov
�lter 28. If no correlations exist between the stimulus, s(t), and the spike train,
x(t), (i.e., Ssx(f) = 0 for all frequencies f) the best linear estimate of the
stimulus, s(t), is equal to the mean value, hs(t)i = 0. The maximalmean square
error computed from eq. 8 is then equal to the variance of the stimulus, �2 = �2s .
Once the best linear estimate, sest(t), is found, the "noise" contaminating the
reconstructions is de�ned as the di�erence between the estimated stimulus,
sest(t), and the stimulus, s(t),

n(t) = sest(t)� s(t): (12)

The mean square error in the reconstructions 16 is then given by

�2 =

Z fc

�fc

df
Sss(f)

SNR(f)
; (13)

where the signal�to�noise�ratio is de�ned as

SNR(f) =
Sss(f)

Snn(f)
� 1: (14)

In this equation Snn(f) and Sss(f) are the power spectra of the noise and the
stimulus, respectively. Thus the signal�to�noise�ratio, SNR(f), is a measure
of the amount of signal power present at a given frequency relative to the noise
contaminating the reconstructions. In the extreme case where the spike train is
completely unrelated to the signal, SNR(f) = 1 for all frequencies, otherwise
SNR(f) > 1.

The accuracy of the reconstruction and thus the information transmitted
from the stimulus, s(t), to the spike train, x(t), is determined by the coding

fraction de�ned as

 = 1�
�

�
; (15)

where � is the root�mean�square�error (rmse) between the actual stimulus,
s(t), and the estimated stimulus, sest(t), and � is the standard deviation of
the stimulus, s(t) 20. Thus the coding fraction represents the percentage of
temporal stimulus uctuations encoded, in units of the stimulus standard de-
viation. The coding fraction takes a maximum value of 1 when the stimulus



is perfectly estimated (� = 0) and the minimum value of 0 if the stimulus
estimation from the [Ca2+]i spike train is at chance level (� = �) 16;30. The
accuracy of encoding in di�erent simulations can be compared on the basis of
the coding fraction. Bialek and collaborators 14;29 used a di�erent measure,
the mutual information transmitted by the reconstructions, sest(t), about the
stimulus, s(t). In contrast to the coding fraction which can be computed for
stimuli of arbitrary statistics, the estimaton of information rates requires the
stimulus to be Gaussian. For a Gaussian white noise stimulus, the �� entropy

or rate of distortion function is de�ned as

I� =
�fc

log(2)
log
� �
�

�
(in bit/sec); (16)

and is a measure of the equivalent rate of information transmission 30;31;32. An
absolute lower bound for the rate of information transmitted per [Ca2+]i spike
is obtained by dividing I� by the mean [Ca2+]i spike frequency, �,

Is =
I�

�
(in bit/spike): (17)

3 Results

In the �rst step of our analysis we estimated the e�ective temporal bandwidth
of stimulus frequencies encoded in the [Ca2+]i spike train using bandlimited
Gaussian white noise stimuli with high (fc = 100 mHz) and low (fc = 10 mHz)
cut�o� frequencies. The signal�to�noise ratio (SNR) in the reconstructions
was calculated according to eq. 14. Signal�to�noise ratios were equal to 1 for
frequencies larger than 20 mHz, i.e., these frequencies were not encoded in the
[Ca2+]i spike train (Fig. 1A). Short segments of the stimuli, the corresponding
reconstructed stimuli, and the [Ca2+]i spike train are plotted in (Fig. 1B, C).
Using a Gaussian white noise stimulus with a high cut�o� frequency, fc = 100
mHz resulted in a poor estimate of the reconstructed stimulus with a coding

fraction below 10% ( = 0:077, Fig. 1B). Choosing a lower cut�o� frequency
for the Gaussian stimulus (fc = 10 mHz) which was adjusted to the frequency
band encoded by the simulated signal transduction process resulted in a better
reconstruction of the stimulus.

This was indicated by higher SNRs for low frequencies (Fig. 1A) and more
than 70% of the stimulus were reconstructed ( = 0:73, Fig. 1C). The recon-
struction �lters, h(t), for both stimuli are displayed in Fig. 1D). In the following
step, we systematically investigated the e�ect of the cut�o� frequency, fc, on
the coding performance by calculating the coding faction, , and the informa-

tion transmitted per spike, Is, by varying fc between 3 mHz and 100 mHz.
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Figure 1: A: Signal-to-noise ratio (SNR) of the reconstructions from Ca2+ spike trains in

response to Gaussian white noise stimuli. B: Reconstruction for stimulus with fc = 100 mHz

and C: with fc = 10 mHz (mean value of kg subtracted). Lower traces: [Ca2+]i spike trains.

D: Reconstruction �lters.

The coding fraction monotonically decreased with increasing fc, whereas the
information transmitted per spike (Is) kept constant for cut�o� frequencies
larger than approx. 30 mHz (Fig. 2).

To study the e�ect of the mean [Ca2+]i spike frequency on the coding
behavior in our model system, we choose a cut�o� frequency of 10 mHz which
has been demonstrated to give good reconstructions of the stimulus. The mean
amplitude of the Gaussian stimuli (fc = 10 mHz) was monotonically increased
to modulate the mean Ca2+ spike frequency. We found that the coding fraction
and the information transmitted per spike had a maximum of  = 0:87 and
Is = 1:1bit=spike respectively at a physiologically plausible value of the [Ca2+]i
spike frequency of 27 mHz (Fig. 3).
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Figure 2: E�ect of fc on the coding behavior quanti�ed by the coding fraction and the

information transmitted per spike.

4 Discussion

Endocrine systems are regulated dynamically and organized in temporal and
structural hierachies ranging from the pulsatile release of hormones and the
uctuations of hormone concentrations in the blood stream to the oscillations
of intracellular concentrations of signaling molecules, such as Ca2+. The issue
of temporal vs. mean rate coding which has received a lot of attention in the
�eld of neuroscience in the last couple of years (see ref. 19 for an overview)
has not yet been studied in the endocrine system. Information transmission
in sensory neuronal systems has been quanti�ed using information-theoretic
approaches to stimulus reconstruction from spike trains 14;15;16;19;20. In the
endocrine system experimental and numerical studies have been performed to
study the e�ect of di�erent pulse frequencies (mean rate coding) and ampli-
tudes on the regulation of intracellular signaling10;11 as well as cellular function
and structure 33;34. However, to date experimental as well as numerical stud-
ies exploring the e�ect of timing of hormonal pulses (temporal coding) on the
regulation of intracellular signaling and target cell function and structure are
lacking.
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the coding fraction and the rate of information transmission.

This work represents the �rst attempt to quantify the information ow in
endocrine signaling from the secretory signaling cell to the �nal e�ector system
of a target cell, exampli�ed for the subsytem of transmembrane signaling. We
used a model of receptor�controlled intracellular Ca2+ oscillations 11 investi-
gated under stimulation by a time�varying random hormonal agonist (ban-
dlimited Gaussian white noise). A stimulus reconstruction method �rst pro-
posed by Bialek et al. 14 and subsequently re�ned by Gabbiani and Koch 16;30

was applied to estimate the time�varying hormonal input signal from the cor-
responding [Ca2+]i spike train. Two di�erent measures were used to quantify
the coding performance of transmembrane signaling in our model system: the
coding fraction,  and the rate of information transmitted per [Ca2+]i spike,
Is. The coding fraction,  is used to compare directly the quality of the re-
construction of the stimulus in the time domain. The information transmitted
per spike on the other hand reports the e�ective information transmission in a
given frequency band (depending on the cut�o� frequency, fc), but it does not
directly compare the actual and the reconstructed stimulus. Thus, it is possi-
ble to �nd a value for Is of 0:55 bit/sec at fc = 100 mHz (Fig. 2), although the
quality of the reconstruction is poor, since less than 10% ( = 0:077; Fig. 2)
of the stimulus is encoded in the [Ca2+]i spike train. Lowering the cut�o�



frequency to fc = 30 mHz, the [Ca2+]i spike train is able to convey more than
25% about the stimulus ( = 0:26) at a similar rate of information transmis-
sion, Is. Thus the amount of information which the spike train conveys about
the stimulus stays stable over a broad range of stimuli with di�erent cut�o�
frequencies whereas the quality of the stimulus reconstruction depends on the
dynamics of the time�varying stimulus. The coding fraction displayed a peak
shaped curve with a maximum at fc = 10 mHz whereas we got a sigmoidal
curve for the rate of information transmitted from the stimulus to the spike
train. It will be necessary to verify experimentally the results found in our sim-
ulations by using time�varying hormonal stimuli whose bandwidth is matched
to the encoding mechanism of the transmembrane signaling system, i.e., in the
range from 5 mHz to 30 mHz for fc we found the best reconstructions as well
as the highest rate of information transmission. This corresponds to a mean
interpulse interval of the hormonal stimulus of approx. 30 sec. to 200 sec.
Our study leaves the question open to determine whether the information of
the time�varying hormonal stimulus that can be encoded in the [Ca2+]i spike
train is actually used by the target cell. In this context, it would be particularly
interesting to correlate the quantitative measures of the coding performance,
such as the signal�to�noise ratio, the coding fraction, and the information

transmitted per spike, Is, with a measure of the �nal e�ector response. Cur-
rently, it appears di�cult to design and perform such a study which correlates
dynamic stimulatory patterns and the �nal response of a cell. The method
used here to quantify the information ow in the subsytem of transmembrane
signaling may be used in other parts of the information transmission system
from the signaling cell to the �nal e�ector system. The convergence of infor-
mation through the phenomenon of cross�talk 1 may lead to an increase of
the coding fraction. On the other hand, if the coding fraction decreases, the
stimulus reconstruction could de�ne the features of the stimulus signal that
were extracted between two stages of this signaling pathway.
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