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We use an information theoretical framework to estimate the probability of the

score of gapped alignments. With appropriate scaling, the score of a global (and

with some adjustments also the score of a local) alignment of two sequences can

be viewed as the di�erence in the number of bits needed to transmit the two

sequences T1 and T2 under two di�erent encoding schemes C1 and C2. C1 is

an idealized scheme, assumed to achieve an optimal encoding with respect to a

distribution p, and the assumption that T1 and T2 are independent. C2 is an

alternate scheme, that will transmit T1 and T2 while taking advantage of the

optimal alignment between the two. That is under C1, the strings T1 and T2
(with respective probabilities p(T1) and p(T2)), are assumed to be encoded using

C1(T1; T2) = log
�

1
p(T1)�p(T2)

�
bits. By slightly modifying a known Theorem

we show that the probability (under p) that two independent sequences T1; T2
can be transmitted with an alternate encoding scheme (C2) with no more than

C1(T1; T2) � r bits is bounded by 2�r. We then show how to use this bound to

derive upper bounds for the probability of gapped alignment scores between two

sequences.

1 Introduction

Amino acid substitution matrices can be interpreted from an information the-
oretic perspective in a very intuitive way, as shown in the seminal paper by
Altschul1. We follow up on this characterization and show that this framework
can be used directly to obtain upper bounds on the probability of obtaining
high alignment scores between two sequences. The method extends to scoring
matrices that allow for insertions, deletions and a�ne gaps. In particular, we
point out that (under appropriate scaling11), we can view a scoring matrix as a
comparison between two encoding schemes. The score obtained is proportional
to the number of bits saved when transmitting the (aligned portion of the) se-
quences together, as opposed to transmitting each sequence independently. A
similar view was taken by Allison et al.5 in the context of global alignments of
DNA strings. Their aim was to �nd a model that would maximize the savings,
i.e. a model that results in a MML (minimum message length) when transmit-
ting the aligned sequences. We are interested in estimating the probability that
the encoding suggested by the scoring matrix (and the corresponding optimal
local alignment) results in a message that is r bits shorter than the message



obtained when encoding each string separately, even though the strings are
unrelated. We use an elementary Theorem from Cover and Thomas 7 to show
that under the assumption that the strings are unrelated, the probability of
saving r bits by using the encoding suggested by the scoring matrix, is bounded
by 2�r. While rigorous and tight estimates for the probability of obtaining a
given score under an ungapped optimal alignment have been obtained in 11;9,
the proof techniques used are quite intricate and are unlikely to generalize to
gapped alignments.

The upper bounds we derive, although slightly higher than the tight bounds
11;9, are based on elementary methods and can be used to upper bound the
probability of alignment scores which allow a�ne gap penalties. The statistics
of alignment scores which allow gaps has been discussed, but not resolved, in
4;2;12. It has been shown4 that there is a phase transition, which depends on
the penalty given to gaps. For low penalties, alignment scores tend to grow
linearly in the length of the sequence, while for high (or in�nite) penalties
they exhibit logarithmic growth. Under appropriate assumptions our results
imply speci�c upper bounds for the probability of such alignment scores and
are consistent with their analysis.

We proceed to give some background on alignments under general scoring
matrices. Given two protein sequences X = X1 : : : Xn and Y = Y1 : : : Ym, one
frequently seeks a subsequence I in X and a subsequence J in Y , for which the
score S(I; J) is maximal over all possible choices of I and J . The score S(I; J)
is computed by aligning I and J , i.e. by pairing symbols in I with symbols in
J , subject to the restriction that if lines were drawn between paired symbols,
the lines would not cross. Whenever the paired symbols correspond to amino
acid i and j respectively, a score sij is assigned to the pair. The set of scores
sij constitute the scoring matrix. A continuous region of size k in I (resp. J)
that is not paired with any symbol in J (resp. I) is typically assigned a score
of �a � (k � 1)b, for a; b > 0. The score S(I; J) is the sum of the scores for
all aligned symbols and non-aligned regions. Given I and J , S(I; J) is easily
computable by dynamic programming, and so is M(X;Y ) = maxI;JS(I; J)

16,
as well as the local alignment A(I; J), which corresponds to the maximal score.
A central question, addressed among others in 4;11;9 concerns the signi�cance,
or probability of obtaining a score M(X;Y ). In most cases the probability
of obtaining a given score by chance is computed under the assumption that
the sequences X and Y are made up of independent identically distributed
(i.i.d) symbols X1; : : :Xn, from some alphabet �, (� being the set of amino
acids in the case of proteins). Character i, (amino acid i) is assumed to occur
with probability p(i) = pi in X and p0(i) = p0i in Y , (frequently one assumes
p = p0.). If the probability that M(X;Y ) > r under these assumptions is



below a predetermined threshold, and we have obtained such a score, we will
tend to conclude that X and Y are probably not independent, but are likely to
correspond to related proteins, and vice versa. Scoring matrices and alignments
also have an interesting information theoretic interpretation 1, which is the
basis of our approach, and which we describe in Section 2. In Section 3 we
show how to obtain probability estimates through this formulation. In Section
4 we extend the methods to gapped alignments and compare our analytical
bounds to published experimental results.

2 Scoring Matrices and Alignments

The distribution of ungapped alignments is well understood and has been ex-
tensively analyzed 1;9;11. Although the bounds for ungapped alignments de-
rived through our approach are not as tight as the known bounds, we �rst
describe our approach for this case. The simplicity of our approach will allow
its generalization to gapped alignments and alignments of repetitive elements.

Given two sequences X and Y with i.i.d symbols (amino acids) with dis-
tributions p and p0 respectively, we compute M(X;Y ) = maxI;JS(I; J), over
all subsequences I 2 X and J 2 Y . When restricting our attention to local
alignments without gaps, (i.e. for the case that all symbols in I are paired
with some symbol in J and hence jI j = jJ j), Karlin and Altschul 11 show that
under appropriate scaling any set of scores sij that satisfy two simple condi-
tions can be interpreted as log ratios of probabilities. They point out that
provided that at least one sij is positive and the expected score is negative,

i.e.
P20

i=1

P20

j=1 pip
0

jsij < 0, the equation

20X
i=1

20X
j=1

pip
0

je
�sij = 1

has a unique positive solution. For simplicity of notation in later sections we
prefer to compute �2 = �= ln 2, so that

P20

i=1

P20

j=1 pip
0

j2
�2sij = 1. Setting

qij = pip
0

j2
�2sij , we obtain that

P20

i=1

P20

j=1 qij = 1, and qij can be interpreted
as the target frequency of pairing i and j in a local alignment of X and Y .
Scaling 1 the scores of the matrix by the factor �2 and rewriting them in terms

of these target frequencies gives �2sij = log2

�
qij
pip

0

j

�
: Note that multiplying all

the values of the matrix by a constant � simply multiplies all alignment scores
by � and does hence not a�ect the scoring scheme. Note however that adding
a constant factor to the values, as in 6, while applicable to global alignments,
completely changes the scoring scheme in the context of local alignments.



The observations in the remainder of this and in the next Sec-

tion form the basis for our analysis. From a minimal length encoding
perspective, consider, as was done in 5 transmitting the strings X and Y un-
der two di�erent encoding schemes and recording the di�erence in encoding
lengths. C1 is an encoding scheme that uses the (assumed) distribution of X
and Y and transmits character i in X with log2

1
pi

bits and character i in Y

with log2
1
p0
i

bits. As long as
P

pi and
P

p0i sum to 1, such a code can be

achieved via Hu�man coding (up to rounding errors) or by arithmetic coding,
which essentially allows us to ignore rounding errors17. After having computed
the optimal alignment A(X;Y ) with score M(X;Y ), we consider the following
alternate encoding C2, (assuming for now that the aligned portions of X and
Y contain no gaps). In C2 we transmit the unaligned portions of X and Y as
before, but transmit the aligned portions \together". In particular the pair of
characters (i; j) would be encoded with log2

1
qij

bits, (feasible since
P

qij = 1).

If I = i1 : : : il and J = j1 : : : jl are the aligned subsequences of X and Y , then
transmitting these aligned portions using C2 would result in an encoding that
has

lX
i=1

log2
1

pil
+ log2

1

p0jl
� log2

1

qiljl
=
X

�2siljl = �2S(I; J) fewer bits :

To use C2 however for the aligned portions, we will also have to specify where
the C2 encoded portion is to be inserted in the respective protein sequences.
This would require roughly an additional log2 n+log2m bits, (assuming jX j =
n and jY j = m). The di�erence (�2S(I; J) � log2 nm) constitutes the actual
savings, as summarized in the following Lemma.

Lemma 1 Given two strings X and Y , of lengths m and n, assume that the

score M(X;Y ) under a scoring matrix with parameter �2 is r. Let C1 be a

code that transmits an occurrence of character i in string in X (resp. Y) with

log2
1
pi

bits (resp. log2
1
p0
i

bits. Let C1(X;Y ) be the number of bits needed to

transmit X and Y in this manner. The code (C1; C2) (as previousely described)

transmits strings X and Y in C1(X;Y )� (�2M(X;Y )� log2(m � n)) bits.

2

What is the probability that two independent strings X and Y with re-
spective distributions p and p0 can be transmitted using code (C1; C2) with r

fewer bits than suggested by \the optimal encoding C1"? As shown above,
an upper bound for the probability of the above (encoding) problem directly
leads to an upper bound for the probability that the score of a local alignment
exceeds a certain value. To estimate the probability that using C2 for the



aligned portions, provides a more e�cient encoding, we use a Theorem from
Cover and Thomas 7.

3 Codes and Probabilities

Theorem 2 [Cover and Thomas, 1991; Competitive Optimality of

Shannon Code] Let `(X) be the codeword length associate with the Shannon

code, that is, X is encoded in `(X) = dlog2
1

p(X)
e bits, and let `0(x) be the

codeword length associated with any other code. Then

Probf`(X) � `0(X) + cg � 2�c+1

2

We will use the following Corollary of the above Theorem
Corollary 3 Let `�(X) = log2

1
p(X)

, (i.e. not necessarily corresponding

to an integral number of bits), and let `0(x) be the codeword length associated

with any other code. Then Probf`0(X) � `�(X)� cg � 2�c.
We now apply this Corollary to our previous setting.

Theorem 4 Let X and Y be two protein sequences of length m and n, with

respective distribution p and p0. Let M be a scoring matrix with parameter

�2 as de�ned earlier 11, and let M(X;Y ) be the score of the highest scoring

local alignment of X and Y . The probability that M(X;Y ) > r is bounded by

2��2M(X;Y )+log2(mn), (�2 as de�ned in Section 2).

Proof:

It follows from Lemma 1 that M(X;Y ) > r implies that the strings XY

can be transmitted using code (C1; C2) in (�2M(X;Y ) � log2(m � n)) fewer
bits than using code C1 alone. By Corollary 3 the probability of this event is
bounded by 2��2M(X;Y )+log2(mn). 2

The obvious question that arises is \how tight is the above bound?" The
bounds derived in 11;9 imply that

ProbfM(X;Y ) > rg <= 1� e�e
��M(X;Y )+ln(Kmn)

;

for a constant K which depends on the probabilities p, p0 and the scoring
matrix. Using the inequality 1� e�x � x, (and 1� e�x � x for small jxj) this
is closely estimated 11 by Ke��M(X;Y )+ln(mn) = K � 2��2M(X;Y )+log2(mn).

This shows that at least for the gapless case our approach leads to prob-
ability estimates that are close to the tight bounds, (to within the factor K).
The simplicity of the approach allows us to get estimates for the signi�cance
of more complicated alignments, such as gapped alignments and alignments of
repetitive elements.



4 Scores for alignments which allow gaps

We now show how to extend the estimates to the most interesting alignments,
namely alignments which allow gaps. One di�culty, in our context, is to
translate the score M(X;Y ) of a gapped alignment to a comparison between
two encoding schemes. We initially follow a similar approach as 6 and then
describe encodings that make use of the fact that the encoded alignments are
optimal.

The scheme C1 is obviously unchanged, but a proper de�nition of C2

requires some care. Suppose that we assign, as is customary, a score of
�a�(k�1)b, (for a; b > 0) to a gap of size k. If the encoding of the alignment is

\e�cient", after determining the scale factor �
(g)

2 , � = 2��
(g)

2
�a should corre-

spond to the probability of the occurrence of a gap in the optimal alignment and

� = 2��
(g)

2
�b to the probability of extending the gap. More accurately ��k�1

should correspond to the probability of the occurrence of a gap of size k, and
�

1��
should correspond to the probability of a gap (of any size). Although it is

unlikely that gap sizes actually follow a geometric distribution, the use of a�ne
gap penalties seems to model such behavior. In either case, whether or not
these probabilities actually correspond to desired \target probabilities" these
frequencies can be used to view the scores of gapped alignments as quantities
which correspond to the di�erence of two encoding schemes. We hence assume

that the occurrence of a gap of length k is encoded in ��
(g)
2 (a� (k� 1)b) bits,

while the unaligned k amino acids are encoded using C1. The actual local

\loss" when encoding a gap is therefore ��
(g)
2 (a�(k�1)b). Accordingly, given

a scoring system sij with gap parameters a; b we seek a �
(g)
2 > 0, for which

f(�
(g)
2 ) =

X
ij

q0ij +
2��

(g)

2
a

1� 2��
(g)

2
b
= 1; with q0ij = pip

0

i2
�
(g)

2
sij :

If such a �
(g)
2 exists, the quantities q0ij and ��k�1 can be used as the frequen-

cies that govern the encoding of the aligned portion of the two sequences. The
scores of gapped alignments then correspond to potential savings in encodings
and Corollary 3 can be applied to these parameters. Note that the change from

�2 to �
(g)

2 , changes the interpretation of the target frequencies from qij to q
0

ij ,
which while counter-intuitive, appears to be a natural side-e�ect when sub-
stitution matrices constructed for gap less alignments are used for alignments
which allow gaps. It is encouraging to note that the condition

P
ij pip

0

jsij < 0

alone is not su�cient to guarantee a solution for f(�
(g)

2 ) = 1, but that pa-
rameters a and b must be to su�ciently large. Indeed, f(0) = 1, (for any



constant b), and f �rst decreases and then increases. It follows that f(�) = 1
has at least one solution if and only if min�f(�) <= 1. (Two solutions exist
when min�f(�) < 1 in which case the larger one is used as a scaling factor.)
A consequence of the non-existence of a solution is that there is no obvious
encoding C2 corresponding to the score M(X;Y ) and therefore Corollary 3
can not be applied. Indeed, it was shown 4 that if gaps are permitted with to
small a penalty, the expected score M(X;Y ) grows linearly in jX j resulting
in a scoring scheme unsuitable for distinguishing random events from \rare
and signi�cant events". The non-existence of a solution for f(�) = 1 might
therefore be interpreted as parameters a; b that are either in (or close to) the
linear range. The following Lemma is a consequence of Corollary 3 and the
above discussion.

Lemma 5 Given a scoring system sij and gap parameters a; b, let � = �
(g)
2 be

the largest positive solution, (if such a solution exists) for the equation

X
ij

pip
0

j2
�si;j +

2��a

1� 2��b
= 1:

If such �
(g)
2 exists the probability of obtaining a gapped alignment score of at

least r when aligning two sequences of respective lengths m and n is bounded

by 2��
(g)

2
r+log2(mn).

2

We computed values for �(g) = �
(g)
2 ln 2, for the matrices BLOSUM50,

BLOSUM62 and PAM250, frequencies p0 = p (as given in 14) and various val-
ues for a and b. These values for � were considerably lower than the stochastic
estimates inferred by Altshul and Gish2. While they warn2 that their (stochas-
tically estimated) values for � may be an overestimate of the true asymptotic
values, we proceed to show that the estimated values based on Lemma 5 are
indeed to low. Note nevertheless, that our methods guarantee an analytically
easily computable upper bound for the probability of obtaining a given score.
We now examine improved encodings to get tighter estimates.

5 Improved Encodings

Before we embark on the description of more subtle encodings, we note that
the only purpose of the encodings is a better understanding of the e�ect of
allowing gaps in alignments and for the estimation of the statistical signi�cance
of such alignments. Clearly we are not proposing to use scoring matrices as
guidelines for encoding or compressing sequences. One obvious shortcoming of
the encoding proposed in the previous section is the fact that we \reserve" a



number of bits for the encoding of gaps when in fact gaps cannot occur in many
locations in the alignment. In particular when the �rst x aligned characters
have a score that is below a+(k�1)b we know that no gap of size k or larger
could possibly extend the current alignment, as the score would drop below
0. In addition, after introducing a gap and hence reducing the score by, say
g, we know that the score must increase by at least g in the remainder of the
alignment. This is most striking when the alignment has a single gap. The
score must be at least g before a gap with penalty g can be inserted and must
increase by at least g after the gap. If we make the reasonable assumption that
in an optimal aligment after the insertion of a gap with penalty g the score of
the alignment must increase by at least g before another gap can be inserted,
it is easy to improve the encoding based on the optimal alignment, resulting
in a net e�ect that can be viewed as an increase in the gap penalty, as shown
below.

Theorem 6 Assume that we have a scoring matrix sij , and let �2
11 (as before)

be the unique positive solution to
P

i;j pipj2
�2sij = 1. Suppose that we use gap

penalty parameters a; b, (i.e. the score for a gap of size k is �a� (k� 1)b). If

there exists a �
(g)

2 > 0, so that

f(�
(g)
2 ) =

X
i;j

pipj2
�
(g)

2
sij = 1�

2��2a

1� 2��2b
;

then an alignment score of r can be interpreted as a savings of �
(g)

2 r bits when

encoding the aligned portion of the sequences and Corollary 3 can be applied.

It follows that the probability that the highest scoring gapped alignment between

two random sequences (of respective lengths m and n and both with amino acid

distribution p) exceeds r is bounded by 2��
(g)

2
r+log2(mn).

Proof:We �rst describe the encoding. The encoding will normally use frequen-
cies q0ij to encode the pair of amino acids i; j. (We will discuss the proper
encoding of gaps a bit later.) Immediately following a gap encoded in say g

bits we "go back" to a gapless encoding using frequencies qij until the score
of the alignment has increased by at least x, at which point we revert to an
encoding based on frequencies q0ij < qij to \make room for the possibility of en-
coding a new gap". Since scoring matrices do not change the score for aligned
symbols depending of whether they occur immediately after a gap or not, we
can instead \change the score for a gap" to reect the \savings" that occurs
after the gap. In particular, suppose that the scoring scheme records a penalty

of �
(g)
2 x for a gap. Let tij = log2

� qij
pipj

�
= �2sij and t0ij = log2

� q0ij
pipj

�
= �

(g)
2 sij .

The alignment following the gap recorded a savings of
Pr

`=1 t
0

i`j`
for the r



Table 1: Analytically derived values for �(g) for BLOSUM62 and various gap penalties a; b

using Theorem 5

BLOSUM62; �1=0:318, �min=:17

b = 1 b = 2 b = 3 b = 4

a = 12 0.199 0.271 0.284 0.290
a = 11 undef 0.244 0.268 0.277
a = 10 undef undef 0.238 0.256
a = 9 undef undef undef 0.206

aligned characters after the gap. (Assume for simplicity that we can chose r

so that
Pr

`=1 t
0

i`j`
equals exactly �

(g)

2 x.) The savings that should have been

reported is
Pr

`=1 ti`j` , and the di�erence between the two is used to reduce the

gap penalty. A recorded gap penalty of �
(g)

2 x hence corresponds to encoding

the gap in �
(g)
2 x+ (

Pr

`=1 ti`j` �
Pr

`=1 t
0

i`j`
) = �2x bits. In summary, we solve

f(�
(g)
2 ) =

X
i;j

pipj2
�
(g)

2
sij = 1�

2��2a

1� 2��2b
;

and set q0ij = pipj2
�
(g)

2
sij . We imagine an encoding based on the frequencies q0ij ,

(and frequencies qij following a gap) and encode a gap of length k in (�2a+(k�
1)�2b) bits. This is clearly possible since

P
k 2

�(�2a+(k�1)�2b) +
P

i;j q
0

ij = 1,
(by de�nition of the probabilities q0). We just showed that the recorded cost

for encoding the gap would be (�
(g)
2 a+ (k � 1)�

(g)
2 b), (while the actual cost is

(�2a + (k � 1)�2b)) the former corresponding precisely to the penalty for the

gap prescribed by the (�
(g)

2 -scaled) scoring scheme. The scoring scheme hence
corresponds to an alternative encoding of the sequences and by Corollary 3 the

probability of the score to exceed r is bounded by 2��
(g)

2
r+log2(mn). 2

The resulting values for �(g) = �
(g)

2 � ln 2 for the BLOSUM62 matrix and
parameters are given in Table 1, which also shows the values �1 for ungapped
alignments and the values �min, corresponding to the theoretic lower bound
for �, obtained by computing min�

P
i;j pipje

�sij . Reducing � below �min

does not allow the use of gaps with lower penalty.
The encoding suggested in Theorem 6 still does not fully explore the fact

that the alignment is optimal and that its score therefore remains always above
zero. In particular, no gap with penalty g can be inserted before the alignment
reaches a score of at least g. This will not have a dramatic e�ect when the
alignment has many gaps, but does a�ect high scoring alignments with up to



one or just a few gaps.
If the encoding were to require that (as is the case for an alignment with

only one gap) the score on either side of the gap increases by at least the
penalty for the gap, it is easy to verify that the corresponding scaling factor

�
(g)
2 would solve the equation below:

X
i;j

pipj2
�
(g)

2
sij +

2�(2�2��
(g)

2
)a

1� 2�(2�2��
(g)

2
)b
= 1; A

The Formula derived in A correspond to a reasonable model for the encod-
ings of alignments, if the percentage of alignments with one gap or less (or even
with a few gaps) is quite high. (One bit su�ces to indicate if the alignment can
be encoded with this restriction.) To estimate the number of alignments with
at most one gap (one would expect in a random setting) we compared 5000
pairs of random sequences of length 1000 each, using the amino acid frequen-
cies 14 and recorded the number of gaps in the highest scoring alignment. As
expected this percentage was quite high with the exception of scoring schemes
that were predicted to be near the linear range. The estimates given by equa-
tion A are recorded in the Table 2. Numbers in italics give values corresponding
to cases where the experimental data suggested that the number of alignments
with one gap or less is below 60%. For many entries the percentage was above
85%. We note that while we can prove the accuracy of equation A only for
the case of an alignment with a single gap, the analytically computed values
are in good correspondance with those estimated in 2. In particular the tables
agree almost 100% on the range of parameters a; b in the signi�cant range.

6 Discussion and Conclusions

We have shown that an elementary method can be used to bound the probabil-
ity for the local alignment score of two sequences to exceed a value r+logmn.
For gapless alignments the bounds we obtain through an elementary analysis
are only slightly worse than similar bounds obtained through an extremely
intricate analysis. For alignments with gaps our derived values for �, although
not identical seem to follow the general pattern of the ones derived in2. In par-
ticular, they agree on the range of values a; b that fall in the logarithmic versus
linear range. Our methods can also be extended to a variety of other align-
ments, such as the probability of high scoring multiple approximate repeats
in sequences. Since the entire analysis is encoding based it automatically can
be applied to the probability of �nding non-overlapping repeats above a given
score in protein sequences, (the factor logmn would be replaced by logn2=2).



Table 2: Analytically derived values for � for BLOSUM50, BLOSUM62 and PAM250 and

various gap penalties a; b computed by equation A, as compared to those derived in Ref. 2.

�1 = :232;�min = :125
BLOSUM50, analytic BLOSUM50, stochastic 2

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

a = 16 0.186 0.201 0.207 0.210 0.180 0.207 0.213 0.222
a = 15 0.177 0.194 0.202 0.205 0.166 0.202 0.210 0.216
a = 14 0.166 0.186 0.195 0.199 0.140 0.188 0.201 0.205
a = 13 0.153 0.177 0.187 0.192 0.114 0.174 0.188 0.202
a = 12 0.135 0.164 0.176 0.183 border� 0.158 0.178 0.192
a = 11 undef 0.148 0.163 0.171 lin.� 0.130 0.167 0.177

�1 = :225;�min = :118
PAM250, analytic PAM250, stochastic 2

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

a = 16 0.163 0.181 0.189 0.193 0.172 0.200 0.208 0.217
a = 15 0.152 0.173 0.182 0.187 0.154 0.193 0.203 0.208
a = 14 0.138 0.163 0.173 0.179 0.131 0.180 0.194 0.204
a = 13 0.120 0.150 0.162 0.170 0.110 0.163 0.184 0.196
a = 12 undef 0.133 0.148 0.157 border 0.145 0.170 0.181
a = 11 undef undef 0.130 0.140 lin. 0.122 0.153 0.165

�1 = :318;�min = :170
BLOSUM62, analytic BLOSUM62, stochastic 2

b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

a = 12 0.275 0.289 0.295 0.298 0.275 0.300 0.305 0.305
a = 11 0.263 0.280 0.287 0.291 0.255 0.286 0.301 0.301
a = 10 0.246 0.268 0.277 0.281 0.216 0.266 0.281 0.293
a = 9 0.225 0.253 0.264 0.270 0.176 0.244 0.273 0.273

�Linear and border2 corresponds to ranges that were judged to be in the linear

range or that were borderlineas judged by the stochastic analysis.

The signi�cance of overlapping repeats, which seems to be di�cult to anal-
yse, can also be estimated by the above method. These applications will be
discussed in more detail in a full paper.
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