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We present a fast, discrete data-mining approach to the problem of �nding k-
tuples of correlated amino acid residues in protein sequence data. When sets
of sequence-distant sites display high mutual information, they may bespeak im-
portant structural or functional features. Our novel methodology overcomes the
limitations of previous methods which examined only single-residue features or
pairwise interactions.

1 Introduction

Many important scienti�c, medical, and industrial problems concern the dis-

covery and analysis of higher-order features (HOFs) in biological data, both

continuous and discrete, and in increasingly large databases. One such prob-

lem is the detection of inter-column correlations in aligned macromolecular

sequence data, from which one might extract valuable structural, functional,

and/or evolutionary knowledge. Because of the daunting computational com-

plexity and sampling di�culties involved in the collection of very high-order

probability and entropy terms, many previous approaches to this problem have

ignored higher-order features entirely or made restrictive locality assumptions,

often to the detriment of structure prediction and sequence classi�cation ef-

�cacy. In this paper, we introduce a fast information-theoretic method that

takes advantage of the discrete amino acid symbol representations and the very

sparse nature of the high-dimensional joint probability density spaces encoun-

tered in this application.

The structure of this article is as follows. We �rst motivate the problem

with a discussion of HOFs in protein sequence and structure modelling. Next is

a precise mathematical formulation of the problem, along with a characteriza-

tion of its complexity and a brief outline of previous approaches to the problem.



Finally, we present our own novel data mining methodology and report on its

application to the discovery of signi�cant k-ary inter-residue interactions in an

HIV protein sequence database.

2 Motivation: Feature Detection in Protein Sequence Modelling

Given a set of aligned sequences, such as shown in Example 2.1 below, rep-

resenting a protein family or superfamily, one can begin to characterize the

family by �nding and selecting its representative features.

2.1 First-Order Features

Consider this toy dataset of aligned sequences of symbolsa:

Example 2.1

col1 col2 col3 col4 col5 col6

A B C D E F

W U C V E G

Z L C M W M

V U C V A A

G B C D Z Z

W L C M E Z

* *

Each of the M = 6 rows represents a di�erent protein sequence, and each

of the N = 6 columns represents a particular position in the aligned sequences,

that is, a particular amino acid residue. The �rst (and often only) step in a

typical feature-selection process is the analysis of features corresponding to

individual residue numbers (a.k.a. \positions" or \sites"); these are primi-

tive or �rst-order features (FOFs). Features relating two or more positions

are higher-order (HOFs). Typically, �rst-order and higher-order features in

protein sequence analysis derive from simple calculations of the amino acid

frequencies for particular positions. Estimates of underlying probability dis-

tributions from some hypothesized population of possible sequences (the entire

protein family) are inferred from empirical frequencies over the sample (the

known members of the family). These estimates may be based entirely and

directly on frequency counts, or may combine frequency counts with other fac-

tors, such as prior probabilities and regularizing terms, as in a proper Bayesian

approach 1; extensive \bootstrap" and similar re-sampling computations may

also assist.

aThese are not real amino acid symbols and sequences. The symbols were chosen, with
the top row consisting of the �rst six letters of the English alphabet, to aid in understanding
the algorithm presented in later sections.



Following this basic approach, one can further compute the variability of

a position using the information-theoretic de�nition of entropy. For a discrete

variable cj we de�ne H(cj) = �
P

jAj

i=1 p(ai@cj) log p(ai@cj); where p(ai@cj)

is the probability of the amino acid ai appearing at position cj , and A is the

alphabet of naturally occurring amino acids, so jAj = 20 in this application.

The entropy H(cj) ranges from 0 to log jAj. Thus a completely conserved

position cj like Column 3 above, having no variability, has entropy H(cj) = 0.

The use of entropy-like measures to detect perfectly- and relatively-conserved

positions is crucial to the multiple alignment task itself and these �rst-order

features often elucidate important evolutionary relationships and structural

and functional constraints, as when one speaks of the \invariant tryptophan"

or the \conserved cysteines for the disulphide bridges in the Immunoglobulin

constant domain". Such features and their frequency estimation also form the

basis for several of the most widely-used template generation and template

matching methods of sequence classi�cation, notably including weight-matrix

methods and the Pro�le methods of Gribskov et. al. 2.

2.2 Higher-Order Features

Although the single-position features are of great use in understanding protein

sequence families and motifs, it is clear that higher-order features | repre-

senting associations among k � 2 residue positions | can capture important

constraints and relationships missed by �rst-order analysis.

Referring again to Example 2.1, one notes that position 3 is very conserved;

and, reading down from the top, one notes further that positions 2 and 4

(indicated by arrows) seem highly variable. However, whereas positions 2

and 4 display several mutations, they \mutate in lockstep" | their mutations

covary perfectly. Given a statistically signi�cant (manifested in many more

sequences) example like this, one could extract a second-order feature, perhaps

in the form of a \rule" relating positions 2 and 4, such as, \at (2,4) in protein

family F , B goes with D, U goes with V, and L goes with M". If statistically

signi�cant, such a relationship would strongly suggest a structural or functional

constraint imposed on the two positions, whereby in the course of molecular

evolution a mutation at one site must always have been compensated by an

appropriate mutation in the other site. Of course, such covariances are not

often so perfectly simple | typically, an amino acid may be paired with any of

several other amino acids, with each pairing in the rule having an associated

probability.

The use of such detectable correlations in structure prediction and classi-

�cation, and the empirical evidence supporting such use, is discussed below.



Three main questions need to be addressed: (1) What kinds of evolutionarily

conserved multi-residue structural or functional constraints might one expect

to �nd by detecting correlations between columns in a multiple sequence align-

ment? (2) Have correlation-detection e�orts in fact found important structural

or functional constraints? (3) How much information do such discoveries pro-

vide towards predicting or determining a molecule's native tertiary structure?

2.3 What Do We Expect to Observe?

A protein family is the set of amino acid sequences that are believed to share

a common global tertiary structure. The theory and observation of protein

folding and evolution supports the general idea of evolution and conserva-

tion within a protein family: Functional constraints are conserved in sur-

face residues; structural constraints are conserved in core residues; mutational

drift dominates in loop residues. Functional constraints often involve other

molecules | such as other proteins, nucleic acids, lipids, metals, O2 or other

small molecules. The kind of structural constraints expected to be conserved

throughout evolution of a protein family are mainly those involving a few key

residues that stabilize a conformation. Where electrostatic interactions are

deemed important, one might expect to �nd a conservation of net charge across

two or more sequence positions. When one of two electrostatically interacting

residues carries a positive charge, its \partner" residue (presumably close in

3D structure even if distant in sequence) should be negatively charged, and

vice versa. The situation is similar for packing constraints. One might expect

to �nd pairs or small k-tuples of residues that display mutually compensatory

mutations with respect to side-chain volume | when a \Large" mutates to a

\Small", another \Small" must mutate into a \Large", to put it simplistically.

2.4 What Has been Observed?

Several studies performed in the last ten years o�er evidence that functional

and structural constraints can be detected from covariation analysis of aligned

sequence positions 3;4, especially if the results of such mathematical analysis

are supported by subsequent double-mutant cycle analysis5;6. As always, one's

discoveries are constrained by one's methodology. For example, one study 4 of

the myoglobin family of protein sequences found the degree of compensatory

mutation to be low for the property of side-chain volume but high for electrical

charge | close to the correlation level expected for perfect conservation of

local charge. The authors speculate that because their analyses focused only

on contact-neighbour pairs of residues, they were able to detect a very locally-

acting constraint like charge conservation but not a more distributed constraint



like conservation of volume. It is reasonable to suggest that a search for still

higher-order (k > 2) interactions might �nd some.

2.5 How Can These Observations Be Used?

Even if we cannot always �gure out exactly which constraints are conserved

among a set of correlated residues, it is worth asking whether the mere de-

tection of such correlations can be used to predict 3D structural proximity.

If so, then even a few such predictions might provide crucial information in

global structure prediction, through the use of distance-geometry constraints 7

or empirical contact potentials 8. There is much ongoing work in this area, but

results thus far indicate that the prediction of pairwise inter-residue distances

from correlation information can provide an improvement of 1:4 to 5:1 times

over random contact predictions 9. By itself, this kind of information is not

nearly enough for ab initio prediction of global conformation, although it may

be enough in many cases to distinguish between two or more alternative confor-

mational models, or to provide additional constraints for energy minimization

and molecular dynamics simulationb.

Clearly, to miss or ignore higher-order interactions is to impair structure

prediction capabilities. It can also hamper the simpler task of mere sequence

classi�cation. This fact is discussed at greater length in other sources 10;11,

where it is also shown that after the signi�cant inter-residue correlations have

been discovered, they can be built into representations that make for fast and

sensitive classi�ers based upon, for example, the methodologies of graphical

models 11.

3 Mathematical Formulation and Complexity of the Problem

Having motivated the problem, we now state it formally. Assume that we are

given a database of M objects �si (\s" for sequence), each of which is charac-

terized by particular values aij 2 A for each of N discrete-valued variables cj
(\c" for column). A particular value for a particular variable is an attribute

and denoted al@cj . We further assume that there is some \true" underlying

probability distribution p() which, for all orders k = 1; 2; : : : ; N speci�es the

probabilities for each possible k-tuple of attributes. For example, for k = 1,

we have p(cj) : A �! [0; 1].

bWe remind the reader that the detection of correlated mutations does not always imply
spatial proximity. Putting aside the merely spurious correlations, those deriving purely from
phylogenetic branching, and the artifacts of poor estimation methodology, there will likely
remain many instances of coordinated mutation that re
ect non-local functional synergism.



The problem, then, is: Given a real number � 2 [0; 1], return a list of all

k-ary joint attribute patterns � = (a�
1
@c�

1
; a�

2
@c�

2
; : : : ; a�k@c

�
k ) such that

P (Observed(a�
1
@c�

1
; a�

2
@c�

2
; : : : ; a�k@c

�
k )jIndependent(c

�
1
; c�

2
; : : : ; c�k );M) < �;

for some Observed number of occurrences of the pattern

� = (a�
1
@c�

1
; a�

2
@c�

2
; : : : ; a�k@c

�
k )

and some model M which underlies one's sampling and hypothesis testing

method. That is, we want to �nd all combinations of attributes which, under

our own sampling and counting mechanism, are observed to occur signi�cantly

more often than one would expect given only the marginal probabilities of

the individual attributes. That is, we discover the \suspicious coincidences".

Inherent in this correlation-detection problem is the problem of estimating

or approximating the distribution p(), or at least parts of it. Other, closely-

related formulations of the problem are possible. For example, several previous

analyses of protein sequence and structure focused on a pairwise mutual infor-

mation value 6;12. Our formulation, in which the search for k-tuples of residues

showing high mutual-information is less direct, re
ects the logical structure

and e�ciency needs of our algorithm, described in Section 5.

We note that a more general database-theoretic formulation of this prob-

lem (e.g., with di�erent alphabets for each column) is applicable to many

problems across many disciplines, and indeed \association mining" is one of

the central problems in the emerging �eld of knowledge discovery and data

mining.

3.1 Complexity of the Problem

To test all possible k-tuples of attributes for \suspiciousness" requires at least

O(

�
N

k

�
� M) computational steps. To do this for all 2 � k � N is an

O(2N ) computation, because one has to enumerate the powerset of a set of

N columns. This powerset expansion of all joint probability terms, known

variously as the full Gibbs model 13 or the Bahadur-Lazarsfeld expansion, is

at the heart of information complexity 14, computational complexity, sample

complexity, and the bias-variance dilemma in statistical modelling and machine

learning 15. This combinatorial barrier makes any direct, exhaustive approach

to association mining infeasible.



4 Previous Methods

Calculation and Extension of Pairwise Correlations: In the last few years, sev-

eral groups have recognized and addressed the importance of at least 2nd-order

features, in proteins 6 and RNA 16. One might make the heuristic guess that a

set of k > 2 columns characterized by high pairwise correlations also display

signi�cant higher-order (k > 2) correlations. This corresponds, more or less,

to considering the transitive closure of the \Correlated With" binary relation,

and there are many possible ways to do this. Like any heuristic, it can lead to

trouble; both false positives and false negatives are possible.

Hidden Markov Models and Grammar Induction: Several groups have re-

ported signi�cant success in modelling protein sequence families with Hidden

Markov Models (HMMs)17. For some of the same reasons why HMMs are very

good at aligning the sequences in the �rst place, using local sequential correla-

tions, these methods are less useful for �nding the important sequence-distant

correlations in data that has already been partially or completely aligned. The

phenomenon responsible for this dilemma, termed \di�usion", is examined in

some detail in recent work by Bengio and Frasconi 18. Essentially, a �rst-order

HMM, by de�nition, assumes independence among sequence columns, given a

hidden state sequence. Multiple alternative state sequences can in principle

be used to capture longer-range interactions, but the number of these grows

exponentially with the number of k-tuples of correlated columns.

Arti�cial Neural Networks: Many neural network architectures and learn-

ing algorithms are able to capture higher-order relationships among their in-

puts 19. MacKay's \density networks" use Bayesian learning to build compo-

nential latent variable models 20, and have been applied to protein sequence

modelling. However, the combinatorial explosion of priors and hyper-priors

that need to be set may severely limit this method's application to real-world

dataset sizes.

5 Coincidence Detection: A Novel Data-Mining Method

Like HMMs and Gibbs models 13, the MacKay approach would bene�t from

a fast preprocessing stage that could �nd candidate subsets of correlated ob-

servable variables and allow one to pre-set some of the priors (or HMM state

transitions, or Gibbs potentials) accordingly.

Clearly, several well-studied and somewhat e�ective methodologies exist

for modelling protein sequence families. In each case, the mathematical ma-

chinery is in place to handle and detect very local and low-order statistical

structure in the data; but the di�culties with computational complexity and



statistical estimation arise in the attempt to account comprehensively for all

possible non-local and higher-order interactions between residues, i.e., columns,

in the aligned sequence data. Our Coincidence Detection method is designed

to get around the central obstacle to higher-order feature discovery: we do not

want to specify or limit, a priori, the number of possible k-tuples of correlated

columns, the width k of any of them, or the degrees of correlation involved; and

yet we do not want to explicitly represent and process latent variables or pa-

rameters for the exponentially-many possible k-tuples. Therefore, the method

must be able to recognize the occurrence of patterns that provide evidence for

k-ary correlations whenever they arise, and to analyze such patterns only when

they arise | rather than set up data structures for higher-order patterns that

may not ever appear.

5.1 Outline of Procedure

More detail on the several variants of our method may be found elsewhere10;21.

We summarize here the four basic components:

Representation: The occurrences of an attribute in a set of data items are

summarized in a binary incidence vector. An incidence vector of length r has

a 1 in the ith position i� the corresponding attribute, e.g., B@2, occurs in the

ith data item in the set.

Sampling: Take r sequence records at a time, from a uniform distribution.

Binning, and Coincidence Detection: For each sampling iteration, throw

the attributes into bins, according to their incidence vectors. These vectors

act like r-bit addresses into a very sparse subset of 2r address space. All the

attributes in one bin constitute a coincidence set, or cset. Record the cset and

the number h : 0 � h � r of occurrences. (Note that h is the number of 1s in

the incidence vector \address".)

Hypothesis Tests: After all the sampling and binning, compare the observed

number of occurrences of each cset with the number expected under the null

hypothesis of statistically independent columns. The basis for the \expected"

part of the hypothesis test is the probability of a match, or coincidence, of size

h in a given r-sample for a cset � = (a�
1
@c�

1
; : : : ; a�k@c

�
k ):

fmatch(�; h; r) =
r!

h!(r � h)!
p(ai1@cj1 ; : : : ; aik@cjk)

hp(~ai1@cj1 ; : : : ; ~aik@cjk )
r�h);

where the joint probability terms re
ect the independence assumption:

p(ai1@cj1 ; : : : ; aik@cjk ) =

kY
l=1

p(ail@cjl)



p(~ai1@cj1 ; : : : ; ~aik@cjk ) =

kY
l=1

(1� p(ail@cjl));

and ~a means the appearance of any symbol other than a. Finally, a Cherno�-

Hoe�ding bound 22 is used to implement the hypothesis testing, and so our

procedure produces an estimate of the probability p� of seeing nobs occur-

rences of a cset � when the marginal probabilities of the components, and the

independence assumption, predict only nexp occurrences. Finally, the list of

observed csets is sorted by their p� values, and the procedure returns a small

list of only the most \interesting" or \surprising" higher-order features, e.g.,

those which have p� < 0:001.
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Figure 1: Operation of the Coincidence Detection Method: Two iterations of the r-sampling
(for r = 3) on the toy dataset are depicted, top to bottom. For each iteration, the left-hand
box represents the dataset, with outlined entries representing the sampled rows. The right-
hand-box represents the set of bins into which the attributes collide. For example, in the
�rst iteration, B@2 and D@4 both occur in the �rst and second of the three sampled rows,
so they each have incidence vector 110 and collide in the bin labelled by that binary address.
Bins containing only a single attribute are ignored; and \empty" bins are never created at
all. All bins are cleared and removed after each iteration, but collisions (coincidences) are

recorded in the Csets global data structure.

This sampling/binning trick allows any number k of sequence-distant at-

tributes to collide together, and it builds small-scale (r �M) coincidences into

evidence for large-scale correlation. With use of appropriate data structures

for storage and updating of the csets, the time, space, and sample complex-



ity of our method are kept quite manageable. While proving tight, meaningful

complexity bounds for this probabilistic algorithm is impossible without severe

distributional assumptions, we observed linear or sub-linear growth in runtime

and memory use as a function of M , N , and desired con�dence levels, in tests

on several specially-constructed datasets, as well as on real protein families 10.

Note that in our problem formulation, no limiting assumptions are made

about how many such cliques of correlated variables there are, how wide they

may be (the maximal size of k), nor on the absolute or relative degrees of

correlation. Nor do we make other assumptions about the statistical structure

of the data distribution.

5.2 Discovering Sites of Functional and Immunological Importance in HIV

V3 Loop

While, to date, most studies of compensatory mutation focus on highly-conserved

\core"-type regions of protein structures, Korber et al. analyzed the highly-

variable V3 loop of the HIV-1 envelope protein. The researchers performed ro-

bust bootstrapped estimates of the pairwise mutual information for all column-

pairs from a set of 31 columns representing V3 residues. They found a small set

of pairs that showed considerable and statistically-signi�cant mutual informa-

tion, and their analysis of the particular attributes (amino acids) suggested a

pattern of highly likely compensatory mutations. Subsequent mutational anal-

ysis experiments in the laboratory indicated functional linkage between some

of the pairs of sites with high mutual information. Because the V3 region is

known to be both functionally and immunologically important, it is suggested

that such analyses might be important in the search for HIV/AIDS vaccine

design.

We applied our method to a newer, larger version of this same Los Alamos

HIV Sequence Database, in order to rediscover the signi�cant site-pairs found

by the Los Alamos group and to try to discover additional highly correlated

k-tuples. As reported in detail in our �rst author's Ph.D. thesis 10, we in-

deed discovered, using the same overall amount of computation, the originally-

reported pairs of correlated residues, with two out of seven exceptionsc. The

Coincidence Detection method also discovered additional signi�cant pairs, as

well as several 3-tuples, a 4-tuple and a 5-tuple. It is easy to show that a

direct search for all signi�cant 4-tuples alone requires more computation than

we performed with our method.

cThis discrepancy might result from algorithmic di�erences; however, because one of the
Los Alamos group's site-pairs did not show signi�cance on our own controlled application
of their algorithm, we believe that some di�erences stem from our use of the newer, larger,
and perhaps otherwise di�erent database.



6 Conclusions and Future Work

A unique strength of the Coincidence Detection method is that it can discover,

e.g., 41-ary correlations in the same time it takes to �nd pairwise correlations of

equal statistical signi�cance. It also requires no assumptions about the number,

size or sequential separation of the hidden higher-order features in the data.

However, the relative advantage of the method is greatest on datasets in which

there exist very strong and signi�cant inter-attribute correlations, of whatever

widths 2 � k � N . The method is at a disadvantage when applied to data

with no correlations, or very weak ones; in such cases, the number of sampling

iterations needed before correlations are detected, or before they can be ruled

out, may be prohibitive. Another association mining method 23 has gained

recent popularity, and a note of comparison is in order: While their method,

with its emphasis on \support" tends to �nd the most frequent associations

(e.g., those (A;B) with high values of p(A), p(B), and p(A;B)), our method

�nds the most surprising associations (e.g., those with p(A;B) � p(A)p(B)).

Di�erent applications may require di�erent criteria.

We are currently applying our methods to additional protein families, to

RNA sequence data, and to non-biological applications. We are also developing

hardware implementations, for the binary attribute representations and bin

addressing scheme lend themselves to very fast and cheap circuit designs, and

many aspects of the algorithm are parallelizable.
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