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The nervous system represents time-dependent signals in sequences of discrete
action potentials or spikes; all spikes are identical so that informationis carried only

in the spike arrival times. We show how to quantify this information, in bits, free
from any assumptions about which features of the spike train or input waveform

are most important. We apply this approach to the analysis of experiments on a
variety of systems, including some where we confront severe sampling problems,

and discuss some to the results obtained and hopes for future extensions.

1 Introduction

As you read this text, optical signals reaching your retina are encoded into
sequences of identical pulses, termed action potentials or spikes, that propagate
along the � 106 �bers of the optic nerve from eye to brain. This spike encoding
appears almost universal, occurring in animals as diverse as worms and man,
and spanning all the sensory modalities 1. The molecular mechanisms for the
generation and propagation of action potentials are well understood2, as are the
mathematical reasons for the selection of stereotyped pulses by the dynamics
of the nerve cell membrane 3. Less well understood is the function of these
spikes as a code4: How do the sequences of spikes represent the sensory world,
and how much information is conveyed in this representation?

Experiments on spiking neurons are usually analyzed either by making
assumptions about which features of the spike train are signi�cant in the code,
or by making assumptions about which features of the sensory input are being
encoded. These assumptions become less compelling in deeper layers of the
brain, so one would like a model independent approach.

Imagine that we present a long duration sensory stimulus drawn from
some particular ensemble of stimuli, perhaps the natural one. During this
long period the spike train varies, and we can quantify this variability by the
entropy per unit time of the spike train, or entropy rate. We can sample the
spike with �xed precision �� , recording only the number of spike in each bin
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Figure 1: Angular velocity of a pattern moving across the 
y's visual �eld produces a
sequence of spikes in H1, indicatedby dots. Repeated presentations produce slightly di�erent

spike sequences. For experimental methods see Ref. [13].

of this size, not their exact placement. The spike train is then converted to
a sequence of integers whose entropy rate we are interested in estimating. If
there is a deterministic mapping from input signals to output spike trains, then
the entropy rate of this sequence is exactly the information rate, as de�ned by
Shannon 5, that the spike train, sampled at this precision, provides about the
sensory stimulus. In fact repeated presentations of the same stimulus lead
to di�erent spike trains (Fig. 1). This variability can also be quanti�ed by
an entropy rate, which we call the conditional or noise entropy rate. The
information that the spike train (recorded with precision �� ) provides about
the stimulus is the di�erence between the total spike train entropy rate and
this conditional entropy rate. While both rates diverge logarithmically in the
limit of �� ! 0, the di�erence converges to the true, �nite information rate.

The problem of measuring information transmission by spiking neurons is
thus exactly the problem of estimating the entropy of integer sequences from
examples. This analogy is model independent, making no assumptions about
the structure of the input signal or the encoding process. These ideas allow us
to quantify the response of neurons in a very general way, even when they are



responding to complex, time dependent stimuli.

2 The Potential Sampling Disaster

The most obvious way to estimate the entropy from examples of the con�gura-
tion is to accumulate a large number of these con�gurations into a histogram,
assume that the (normalized) count for each con�guration approximates the
probability of that con�guration, and evaluate the entropy directly from the
de�nition S(N;�� ) = �

P
i
pi log2 pi bits, where i indexes all possible con�g-

urations of integer counts in the N bins of size �� .

This procedure works only if each con�guration occurs many times. Imag-
ine that we have a spike train with mean spike rate �r � 40 spikes/s and we
sample with a time resolution �� = 3 ms. The maximum entropy distribution
consistent with this mean rate and a refractory period of 3 ms or more is a
sequence of 0's and 1's, with the probability of a 1 being �r�� = 0:12. The
entropy of the con�gurations in a window of size T = N�� = 99 ms is

Smax(N;�� ) = N [�(�r�� ) log2(�r�� )� (1� �r�� ) log2(1� �r�� )] (1)

� 17:8 bits:

Naively, then, we need to see more than 2S � 2� 105 examples of the 99 ms
windows. If these windows have to be non-overlapping, then we need more
than three hours of data, and one might think that we need much more data
than this to insure that the probability of occupying each bin is estimated with
reasonable accuracy. Such large quantities of data are generally inaccessible
for experiments on real neurons.

Here we report that it is possible to make progress despite these pessimistic
estimates. There are several ingredients: First, we examine explicitly the de-
pendence of our entropy estimates on the size of the data set and �nd regular
behaviors that can be extrapolated to the in�nite data limit. Second, general-
izing the suggestion by Ma8, we evaluate lower bounds to the entropy that are
much less prone to sampling errors. Third, we are interested in the extensive
component of the entropy in large time windows, and we �nd that a clean ap-
proach to extensivity is often visible before sampling problems set in. Finally,
we have developed bounding procedures which are practical even in the limit
of extreme undersampling of the conditional entropy (as few as two repetitions
of only a few tens of seconds in length may su�ce).



3 Direct Estimation

We begin our analysis with data taken from the H1 neuron of the common
blow
y12 for the case where spike times have been recorded with a precision of
�� = 3 ms. For a window of T = 30 ms|corresponding roughly to the behav-
ioral response time of the 
y 9|we can estimate the entropy rather accurately
by the naive procedure described above. The resulting entropies as a function
of the amount of data included in the analysis vary only slightly (the �nite
data set corrections are less than a part in 10�3)). The dependence on systme
size is well �t by Snaive = S0+ S1=size +S2=size

2 and, under these conditions,
we feel con�dent that S0 is the correct entropy for this combination of T and
�� . This procedure is applicable to any preparation where su�cient data can
be gathered to allow for direct estimation of the entropies out beyond the time
scale of signi�cant correlations in the spike trains. We have used it successfully
in other systems including the cricket cercal system and even the MT visual
area of the macaque monkey (in a reanalysis of the data of Ref. 7). However,
even in the case of the 
y where large amounts of date are available, if we
extend the naive procedure to windows of T = 200 ms, �nite size corrections
become large, the contribution of the second correction is signi�cant and the
extrapolation to in�nite size is unstable. Fortunately, there are ways of dealing
with this di�culty.

4 A Useful Upper Bound

First, the entropies estimated using windows of lengths short enough that
direct estimation is possible already provide upper bounds to the total and
conditional entropy rates. The simplest upper bound to the entropy rate can be
obtained from dividing the entropy of the distribution of integer strings of size
N by N�� . Since this neglects all correlations between the di�erent windows,
it always overestimates the entropy and provides a crude upper bound. It
can be substantially improved by utilizing an argument of Shannon's about
compressing symbol sequences using the the optimal predictor which utilizes
only the previous M symbols. Imagine accumulating the probabilities of all
the integer sequences seen in size M +1 bin windows. Now, given the contents
of the previous M bins, one can say what the most likely integer for the next
bin is, as well as the next most likely and so on. Following Shannon5, consider
a compression scheme where the original series of integers is replaced by a
series of integers that lists the rank of the actual integer in each bin, e.g.
a 0 if the most probable integer occurred, a 1 is the next most probable,
etc. It is clear that the this procedure is invertible (modulo a �nite initial
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Figure 2: The total and noise entropies per unit time (in bits per second) are plotted versus

the reciprocal of the window size (in s�1), with the time resolution held �xed at �� = 3 ms.

Results are given both for the direct estimate and for the boundingproceduredescribed in the
text, and for each data point we apply the extrapolation procedures of Fig. 2. As discussed
in the text, the plot is linear for window sizes that are not too long, where undersampling is

severe, and not too short, a regime where correlations spoil extensivity. The linearity allows
us to extrapolate to the entropy per unit time for words of in�nite length. Arrows indicate

upper bounds obtained by di�erentiating S(T ), as explained in the text. The information
transmitted per unit time about the stimulus is the extrapolated total entropy per unit time

minus the extrapolated noise entropy per unit time.

speci�cation of the �rst M bins) so the new series has the same entropy rate
as the original. We can now �nd an upper bound to its entropy rate, and thus
to the true entropy rate, by neglecting all correlations between the integers
in the new stream and estimating the entropy as: � (1=�� )

P
i
pi log2(pi),

where pi is the probability that a randomly chosen bin contained the integer i.
The resulting upper bound is nothing other than 1=(�� ) times the di�erence
between the entropy estimate formed using windows of sizeM�� and windows
of size (M + 1)�� . This estimate of the entropy includes all correlations out
to the time scale T =M�� , and would be exact if there were no longer range
correlations; it provides an upper bound to the entropy rate in any case and
the same bounding procedure can be applied with a trivial generalization to
the noise entropy.

For the case of the total entropy for H1, the bound becomes progressively
tighter at larger M , until sampling problems set in. There is a broad plateau
(�2:7%) in the range 18 < M�� < 60 ms, leading to the arrow shown in Fig.
2 at 157 bits/s, in excellent agreement with the extrapolation



5 A Useful Lower Bound

Ma 8 discussed the problem of entropy estimation in the undersampled limit.
For probability distributions that are uniform on a set of N bins (as in the
microcanonical ensemble), the entropy is lnN and the problem is to estimate
N . Ma noted that this could be done by counting the number of times that two
randomly chosen observations yield the same con�guration, since the proba-
bility of such a coincidence is 1=N . In the undersampled limit, Ma's procedure
is actually the optimal estimator of the entropy in the least-squares sense if
all values of N are equally likely a priori. More generally, for non-uniform
distributions the probability of a coincidence is Pc =

P
p2
i
, and it is clear that

S(N;�� ) = �

X
pi log2 pi = �hlog2 pii

� � log2 (hpii) = � log2Pc; (2)

so we can compute a lower bound to the the entropy by counting coincidences.
This is the minimum entropy consistent with a given Pc, and it is one of the
Renyi entropies 10. It is also at the heart of algorithms for the analysis of
attractors in dynamical systems 11.

The bound in Eq. (2) is tightest for distributions that are close to uniform.
The distributions of spike sequences cannot be uniform because the spikes are
sparse. But the distribution of sequences with �xed spike count Nsp could be
more nearly uniform, and so we apply the Ma bounding procedure indepen-
dently in each Nsp sector. Thus we obtain a lower bound to the entropy,

SMa = �

X
Nsp

P (Nsp)

� log2

�
P (Nsp)

2nc(Nsp)

Nobs(Nsp)[Nobs(Nsp)� 1]

�
; (3)

where nc(Nsp) is the number of coincidences observed among the words with
Nsp spikes, Nobs(Nsp) is the total number of occurrences of words with Nsp

spikes, and P (Nsp) is the fraction of words with Nsp spikes. Here and hereafter
we drop the reference to the implicit dependence on N and �� for all entropies,
except when necessary for clarity.

The bound SMa su�ers from two types of sampling errors. First, there
are those associated with the estimate of P (Nsp). A slight generalization of
the analysis of Ref. 6 shows that the leading error in the entropy computation
for each Nsp is simply �[Nobs(Nsp) ln 2]

�1. The second type of errors are
associated with estimating

P
p2
i
from the observed number of coincidences



nc(Nsp). This produces an error in the contribution to the entropy at each
Nsp,

�SMa =
2

Nobs(Nsp)

P
0

p3
i
� (
P
0

p2
i
)2

(ln 2)(
P
0

p2
i
)2

+ :::; (4)

where the sum is taken only over words with Nsp spikes. This is again O(N
�1
obs)

and exponentially smaller than the sampling errors expected for the naive
estimator. For the case of uniform probability distributions at �xed spike
number, even this leading term vanishes.

In accord with these arguments, we found a very weak dependence of the
Ma bound on the size of the data set. Furthermore, the error bars which we
estimate by subdividing the data are also extremely small. These results give
us con�dence that the procedure in Eq. (3) gives a reliable lower bound to the
entropy. In Fig. 2 we �nally plot the total entropy as a function of the window
size T for the H1 experiment, with results from both the naive procedure and
from the Ma bound. For su�ciently large windows the naive procedure gives
an answer smaller than the Ma bound, and hence the naive estimate must
be experiencing sampling problems. Before this sampling disaster the lower
bound and the naive estimate are never more than 10{15% apart. As with the
upper bound, the same procedure can be applied with a trivial generalization
to the noise entropy, and again the bound is always within 10% of the direct
estimate, prior to the onset of sampling problems.

The point at which the naive estimate crashes into the Ma bound is also
the point at which the second correction, S2, becomes signi�cant and we lose
control over the extrapolation to the in�nite data limit. This point occurs
at a window size of roughly 100 ms. The sudden transition from accurate
estimation to a crude lower bound occurs because the number of possible spike
trains is growing exponentially with window size, and hence we are either very
well sampled or disastrously undersampled. Conversely, the critical window
size is only logarithmically dependent on the size of the data set, so we do not
sacri�ce much if we have more limited duration recordings.

6 Extrapolation to In�nite Window Size

If the correlations in the spike train have �nite range, then the leading sub-
extensive contribution to the entropy will be a constant. Thus, if we plot the
entropy per unit time as a function of inverse window size, we should see a
linear behavior which can be extrapolated to the in�nite time limit. This is
seen clearly in Fig. 2, and emerges before the sampling disaster. Indeed the
break away from linear behavior is close to the point where the naive estimate



crashes into the Ma bound and S2 becomes large, con�rming our identi�cation
of this point. Given the clean linear behavior in a well sampled region of the
plot, we trust the extrapolation and arrive at an estimate of the entropy per
unit time as seen with 3 ms resolution, 157�3 bits/s. This agrees well with the
estimate based on the Shannon predictions scheme, which we argued should
give a tight bound on the total entropy. Similar extrapolation is possible for the
noise entropy, as shown in Figure 2. The di�erence between the two entropies
is the information which the cell transmits, Rinfo = 78� 5 bits/s, or 1:8� 0:1
bits/spike at a resolution �� = 3 ms.

7 The Severly Undersampled Limit for the Noise Entropy

In many preparations, the hundreds of repetitions of the stimulus possible for
H1 or even the tens of repetitions possible in the macaque visual cortex, may
simply be out of reach. For example, we have analyzed data taken from human
skin stretch receptors 13 where, frequently, only two repetitions of a dynamic
stimulus of length 30 seconds were possible before the extracellular electrode
shifted. In this case, the techniques outlined previously are wholly inadequate
for estimating the conditional entropy, and hence the information. Fortunately,
useful bounds may still be obtained in these circumstances.

First, we discuss a useful lower bound on the information from a small
number of presentations of the stimulus. Imagine that one has recorded the
spike trains (as before with precision �� ) evoked by n repetitions of some rel-
atively long dynamical stimulus. The spike trains should have no correlations
with each other, other than those induced by the stimulus, since they are from
di�erent trials, well separated in time. In this case, the information, In�1,
that n� 1 spike trains supply about another spike train, must be less than or

equal to the information that one spike train supplies about the stimulus, Itrue:
In�1 < Itrue. The intra-train information rate, given by the di�erence in the
entropy rates of the n trains taken together (Sn) and the sum of the entropy
rate for n� 1 trains (Sn�1) and a single train (S1), is therefore a lower bound
on the information rate of the spike train about the stimulus:

Itrue > In�1 = S1 + Sn�1 � Sn (5)

Further, in principle, this bound converges to the true mutual information for
large n:

lim
n!1

In�1 = Itrue (6)

It also provides the optimal lower bound to the information rate that is ob-
tainable from n repetitions without any assumptions about the encoding of the



Figure 3: Results obtained from recordings in human skin stretch receptors. Top points

(�lled squares) are naive estimates of the total entropy rate extrapolated to in�nite data.
The arrow denotes the Shannon upper bound on the total entropy rate inferred from these

data. Open hexagons are upper bound to information transmitted obtained from total
entropy as above and lower bound to conditional entropy discussed in the text (only two
repetitions were used). Solid line lies just above any of the estimated upper bounds and we

therefore take it (150 bits/sec) as a true upper bound of the transmitted information. Filled
hexagons are direct estimates of the transmitted information from the total and conditional

entropies (extrapolated to in�nite data). This was possible for this data set because 12
repetitions were recorded and some estimate of the conditional entropy could be made.

Extrapolated estimate of the true information was 134.5 bits/sec. Open squares are the
mutual information between the spike trains of repetitions 1 and 2, estimated for various

window sizes. This gives a lower bound to the information the spike trains carry about the
stimulus (see text), based on only two repetitions, of 102.5 bits/sec. Dashed lines are guides
to the eye for extrapolating to the limit of in�nite window size, assuming the approach to

extensivity of the entropy discussed in the text (see also Fig. 3).

information. Practically, sampling problems occur when we try to estimate
the total entropy rate for more than a handful of spike trains, even using all of
the foregoing strategies. This limits utility of the intra-spike train information
to small n, and for larger n the techniques described previously are superior.
However, when few repetitions are available, the intra-spike train information
can be quite useful. An example of results obtained for only two repetitions is
shown in Fig. 3:

The naive estimates of entropy rates for both a single spike train, n spike
trains and n� 1 spike trains are all expected to have the form of true entropy
rate plus constant times the inverse window size. Therefore, the naive estimate
of the intra-spike train information, Inaive

n�1 (N;�� ), de�ned as:

Inaiven�1 (N;�� ) =
1

N��
(S1(N;�� ) + Sn�1(N;�� )� Sn(N;�� )) (7)



should have the form for large window sizes: I intratrue +C1=N+exponentially small,
where I intratrue is the true, intra-spike train information rate. Therefore, extrap-
olation to a true lower bound on the rate of transmitted information is, in
general, practical, as shown in Fig. 4.

Also, shown in Figure 4 are upper bounds to the true information rate for
a range window sizes. These are obtained from the naive estimate of the total
entropy rate and a lower bound on the conditional noise entropy obtained at
each window size. The lower bound is obtained from only two repetition of the
stimulus by noting that:

Snoise(N;�� ) = h�

X
i

pi log2(pi)iposition in stimulus (8)

= �hhlog2(pi)icon�gurationsiposition in stimulus

> �hlog2 (hpiicon�gurations)iposition in stimulus

> �hlog2 (hhpiicon�gurationsiposition within stimulus subset)isubsets of stimulus

> �hlog2P
subset
c isubsets

where Pc is the probability that identical con�gurations were observed for the
two spike trains on the two trials, given that the time window looked at fell
within the given subset of the stimulus. Thus we need only specify a way of
dividing the spike train up into subsets and then estimate Pc for each subset.
The bound will be tighter the more for more uniform hhpiicon�gurations within
a given subset, and we therefore divided the stimulus into subsets where the
windows in a subset all had the same number of spikes in the �rst trial. More
restricted subsets yield a tighter bound, but cause more sampling problems,
until, in the limiting case, each window is its own subset and the above is
equivalent to the lower bound on the conditional entropy discussed previously.

8 Discussion

The temporal sequence of spikes provides a large capacity for transmitting
information, as emphasized by MacKay and McCulloch nearly 45 years ago
14. One central question in studies of the brain is whether this large capacity
is used, or whether the variations in spike timing represent noise which must
be averaged away 15. We suggest that the proper quantitative formulation of
this question is the comparison of information transmission rates (in bits/s)
with the total entropy of the spike train (also in bits/s) as a function of the
time resolution �� 16. Further, much of the current debate is focused on
cells in the central nervous system 15, where assumptions about what is being
encoded should be viewed with caution. It therefore exceedingly important



Figure 4: As for Fig. 3, but here analyzed data are those from MT area of macaque visual
cortex (Ref. [7]) with timing precisions of 6 msec.

to have techniques for estimating quantities of fundamental important, such
as the Shannon information in the spike trains, which are applicable without
assumptions. We believe that the analysis techniques discussed here are of
nearly universal applicability, and in support of this we display in Fig. 4
results obtained for the information rate of a neuron in the motion sensitize
region MT of the macaque monkey visual cortex.

At least for the H1 neuron, we believe that our results are su�cient to
demonstrate the e�ciency of the neural code for temporal resolutions ap-
proaching a millisecond. In support of this, we note that we have repeated
the analysis of entropy and information at several di�erent values of the time
resolution �� , from 0.7 ms to 800 ms. The information rate Rinfo has a very
linear dependence on the log of the time resolution throughout much of this
range; loss of one bit of precision in the speci�cation of spike times (�� ! 2�� )
causes a � 10 bit/s drop in the information rate.

The methods here are thus su�cient to demonstrate the importance of
spike timing in this system down to the millisecond level. However, more
importantly, information theory provides a general paradigm for establishing
which features of the spike train are important for information transmission. To
test that some feature of real neural spike trains is important for information
transmission, one need only compare the information carried by the actual
spike train with that carried by a modi�ed version of it where the feature in



question has been degraded. Studying the information loss associated with
coarsening timing precision is a speci�c example of this which demonstrates
the importance of millisecond timing precision in H1. We have also undertaken
analysis using information theory to demonstrate the importance of the super-
Poisson reproducibility of spike counts in the H1 neuron 17, and the road is
open to a huge range of further applications of information theory in the study
of neural spike data.
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