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In this paper we show how Boolean genetic networks could be used to address complex problems in
cancer biology.  First, we describe a general strategy to generate Boolean genetic networks that
incorporate all relevant biochemical and physiological parameters and cover all of their regulatory
interactions  in a deterministic manner.  Second,  we introduce ”realistic Boolean genetic networks”
that  produce time series measurements very similar to those detected in actual biological systems.
Third,  we outline a series of essential  questions  related to cancer biology and cancer therapy  that
could be addressed by the use of “realistic Boolean genetic network” modeling.

Introduction

Over the past several years overwhelming evidence has been produced that
human cancer is caused by multiple genetic changes involving a complex regulatory
network of genes and biochemical interactions1,2. As a consequence, effective
therapy probably will be achieved only through multiple combinatorial therapeutic
targets. Traditional biochemical methods are highly biased towards the identification
of a single cause for a particular biological effect. For example, molecular biological
screening for oncogenes tend to identify only “full oncogenes”, i.e., genes that in a
certain phenotypical assay will induce malignant transformation by themselves.
Identification of three genes that cause cancer together but which individually do not
have transforming ability is a significantly more complicated problem. Amongst
other difficulties, if it is assumed that the human genome contains 100,000 genes,
one has to start with 100,0003=1015 transfected colonies, requiring tens of
thousands of tissue culture dishes, to assure that all possible gene combinations are
represented. This example demonstrates that the identification of biologically
important gene or protein combinations will call for novel approaches which go
beyond the traditional experimental methods. One of these approaches is building
genetic networks that would efficiently model the actual behavior of normal and
neoplastic cells, based both on our biological understanding of the cell cycle and the
wealth of gene expression data and biochemical measurements that will be soon
available due to novel technologies such as DNA chips and DNA microarray3,4.

Genetic networks have been used to model biological systems for several
decades5.  For computational reasons, the only model system that has yielded
insights into the overall behavior of large genetic networks (up to 100,000 genes)
so far is the one introduced by Kauffman almost thirty years ago5.  In this, the



expression of genes are treated as Boolean variables, they are either ON or OFF,
taking the corresponding value of 1 or 0. The state of each gene is determined by a
group of genes and the corresponding Boolean function. For a review on the
behavior of Boolean networks, the reader is referred to the comprehensive treatment
of the topic by Kauffman5 and a concise review by Somogyi and Sniegoski6.
Despite their obvious limitations, such as the elimination of continuous functions
(for example dose response curves), Boolean networks can be efficiently used to
build models to study the following questions : (1) What is the overall nature of
malignant transformation in terms of genetic networks? (2) What changes maintain
cancer ? and (3) What will be the level of complexity of efficient therapeutic
strategies against cancer ?7.

This paper deals with two issues: (1) The necessary steps to create Boolean
genetic networks that closely resemble the actual biological behavior of cells, which
we call “realistic Boolean genetic networks”. (2) A series of biologically relevant
questions that can be answered using “realistic Boolean networks”.  These issues
have practical implications on understanding carcinogenesis and developing effective
therapeutic strategies against cancer.

1. Strategy for Generating Boolean Genetic Networks

Genetic networks can be generated in  three well defined steps. First, appropriate
variables that incorporate all relevant biochemical and physiological parameters
must be identified. Second, the interactions between these variables must be defined
and translated into mathematically intelligible connections, (i.e., rule sets or
functions between the variables). Third, an efficient computer model must be
developed that can produce quantitative results  at the level of both the entire system
and its constituting parts. Our strategy to build “realistic Boolean genetic networks”
is structured along these guidelines.

(1)     Genetic network variables   : The variables in our modeling are
“biological parameters” that are defined as any biologically relevant variable in the
cell. It can be the expression of a gene (i.e., the level of a particular mRNA or the
amount of a protein), a particular status of a protein such as a biologically relevant
phosphorylation or any other posttranslational modification, the localization of a
given protein, or the presence or absence of a cofactor, such as steroid hormones.
The criterion  for a “biological parameter” is that a change in the  “biological
parameter” alone or in combination with other changes must lead to a change in the
status of one or more “biological parameter(s)”. Furthermore, all chemically
identical entities (for example protein molecules), that share the same function and
regulation are included in a single “biological parameter”.  Traditionally, Boolean
genetic networks included only gene expression levels as its variables5,6. This leads
to the problem that the rules connecting different genes can change. Let us take as
an example the case in which a certain gene will have an effect on another gene only
if the protein derived from the first gene is activated by a certain posttranslational
modification. The activation of that protein can be time and environment dependent,
as is often the case, and the posttranslational activation can happen without any



relevant changes in gene expression patterns. An extended network incorporating all
relevant parameters, however, will have rules obeying exclusively the laws of
physicochemistry. For example,  if a given transcription factor is at the right
location and in the proper activation status, then it will bind to its DNA binding
site, provided there is no inhibitor present. However, that inhibitor can also be
incorporated into the model as a “biological parameter” having an “IF NOT” input
on the binding status of our transcription factor. It can be easily seen that the
inherent time dependent nature of biochemical rules connecting genes have been
transformed into a set of time-dependent variables. For example, if the activation
status of a given protein is handled as a variable itself, then the model will not have
to deal with the uncertainty of whether the protein is active at a certain state of the
cell or not. The obvious advantage of this extension is that it makes the genetic
network deterministic. The disadvantage is that it significantly increases the number
of variables in the genetic network. Estimating the number of variables in an
extended network is the subject of another papera , and requires the estimation of, for
example, the number of biologically relevant, distinct states of an individual
protein. Here we mention without further proof that the overlapping nature of
biochemical rules probably will not allow an increase of variables much larger than
one order of magnitude. This will leave us with a network of about one million
variables, as opposed to a “pure genetic” network of 100,000 variables.  The
computational resources required to analyze this extended network will significantly
increase. On the other hand several quantitative features of Boolean genetic
networks, such as the expected cell cycle length, are proportional to the square root
of the total number of genes5 (or variables). Therefore these numerical
characteristics change only three-fold with one order of magnitude increase in the
number of Boolean variables.

(2)     Regulatory interactions between variables:     The regulatory interactions
between “biological parameters” in a  Boolean network can be represented as a
combination of a directed graph5 and a set of logical functions. The nodes in the
graph are “biological parameters”, the directed edges lead from the regulating
“biological parameter” to the regulated “biological parameter”, and, finally, the
logical functions will define the status of a regulated “biological parameter”
depending on the status of its regulatory inputs. This graph can be characterized by
several parameters: e.g., the average number of regulatory inputs per node, the
distribution of regulatory outputs per node, the group of permitted logical, such as
canalyzing, functions, etc. The overall characteristics of this graph will determine
the behavior of the genetic network. Kauffman has found, for example, that unless
the number of regulatory inputs and the nature of logical functions are restricted, the
genetic network behaves chaotically5.

(3)      Modeling the behavior of genetic networks:    The computational time
required to analyze a realistic Boolean genetic network increases with the power
function of the number of “biological parameters”. The analysis of large networks is
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possible using methods such as the bit-packing technique developed by
Bhattacharjya and Liang8.

2. Realistic Boolean Genetic Networks

The “state” of a genetic network is a combination of the ON/OFF states of
its variables. A deterministic genetic network of a given state, when left alone, will
produce a series of consecutive states defining trajectories and attractors (for
definitions see 5,6).

We define a “Realistic Boolean Genetic Network” (which we will refer to
simply as a “realistic network”) as a Boolean network5,6 that incorporates all
relevant biological variables and has a rule distribution that will produce a time
series of consecutive states closely resembling the experimentally measured time-
dependent changes of “biological parameters”. The experimentally measured time-
dependent changes of “biological parameters” can be used as a direct input into the
genetic network, or certain overall features can be extracted and then tested whether
the actual model produces the same overall features.

As of today, less then 10% of all human genes have been identified9, and
only a fraction of those were studied in context of the cell cycle. Even this limited
amount of experimental data allows estimating certain overall features of the cell
cycle. In the first comprehensive study of cycling genes, it was found using  serial
analysis of gene expression (SAGE)10, that probably less then 2% of all genes are
cycling in yeast11. A review of the literature (see several review articles in Cell,
79, 547-582, 1994 and in Science, 274, 1643-1647, 1996)12,13 would suggest a
similar estimate for human cells, although no comprehensive measurements have
been performed to determine the exact ratio of cycling genes so far. Furthermore,
reviewing a large number of cycling genes (see the previously mentioned
reviews12,13), it is noteworthy that genes do not show frequent oscillations in their
expression levels during the cell cycle.  There are several genes that significantly
change their expression level during the cell cycle, often increasing from
undetectable to maximal level of expression and back, but no gene seems to change
its expression more than twice during a complete cell cycle. This raises the question
of what characteristics of the genetic network determine the number of cycling genes
and the lack of frequent oscillation.

 In order to investigate whether features such as the lack of variables
frequently changing their status and the actual number of cycling genes are also
present in genetic network models, we performed computer simulations on random
Boolean networks, which is believed to be the best model currently available for a
large number of genes5. The focus of Boolean network modeling of the genetic
network so far has been on connectivity k=2, since random networks with a larger
number of inputs per gene, when all possible logical functions are used, tend to
produce extremely long state cycle periods that would translate into unrealistically
long cell cycles in biology5.  The rule set we employed was designed to exclude
functions which has EXCLUSIVE OR and its variant EQUIVALENT on any two of



its inputs. These two functions generate chaotic behaviors producing networks with
extremely long cycles5.

 Our initial results suggested that oscillations during the cell cycle in a k=2
network were very frequent. Therefore, we have tested genetic networks with
alternative overall features in their directed graph representation (see section 1.2). We
have studied models with a higher number, 3, 4, or 5 inputs per gene, using
hierarchically canalyzing functions. The use of hierarchically canalyzing functions
produces a smaller cycle length for  k>2 networks. A k-input Boolean function is
hierarchically canalyzing if (1) the function itself is canalyzingb, (2) when the
canalyzing input of the function takes the non-canalyzing value, the remaining
function with (k-1) inputs is again canalyzing, and (3) when both of its canalyzing
inputs take their non-canalyzing values, then the remaining function with (k-2)
inputs is still canalyzing, and so on. This canalyzing property is recursively true for
all the inputs of the function. We have produced a list of all such functions for k=2,
3, 4, 5. The number of hierarchically canalyzing functions for these k values is 14,
96, 1050, and 15036, respectively. Many of these functions do not depend on one of
its inputs. In order to investigate the network behaviors that are distinctly associated
with the k-input Boolean functions, we screened out the functions that are constant
with respect to one of its inputs. The total number of functions that depend on all of
its inputs for k=2, 3, 4, 5 is, 8, 64, 736, and 10624, respectively.

The networks discussed so far have a homogenous distribution of
regulatory outputs and the mean number of regulatory outputs per “biological
parameter” is about 2. In real biological systems this is obviously not the case:
certain “biological parameters”, such as transcription factors, regulate numerous
other “biological parameters”, while others regulate only a few  or none. We have
generated a k=2 network with canalyzing functions in which the mean number of
regulatory outputs for half of the “biological parameters” is between 0 and 2 , and
for the other half is between 10 and 12.

Our results show that oscillations during the cycle are very frequent in all
of the networks discussed so far. The majority of all cycling genes change their
expression states four or more times when k takes the values of 2, 3, 4 or 5 or when
k=2 and there is a non-homogenous regulatory output distribution. The exact
percentage of cycling genes undergoing this behavior depends on the length of the
cell cycle attractor and ranges between 50 and 95% of all cycling genes. Figure 1
shows a detailed distribution histogram for the k=2 network with 200 genes,
demonstrating that the typical number of expression level changes among the
cycling genes is about the half of the cycle length. This is also true for larger
networks with N=1000 and N=5000 (data not shown). Our results for N=200
networks with higher k values (k=3,4,5) showed that although there is a gradual
reduction in the frequency of gene oscillation, this reduction is relatively small and
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the rate of Boolean variables changing their status four or more times per state cycle
never drops under 50% of all cycling variables. We also found that the percentage of
the cycling genes is relatively large, being 13% for k=2 and 20% for k=3, 4, 5 even
for the shortest period between 4 and 8 transients. The percentage of cycling
variables increases with the cycle length. Increasing the value of k from 2 to 5, or
changing the distribution of regulatory outputs, did not ensure either a less than 2%
rate of cycling genes or a reduction in the number of genes changing their
expression status more than twice during the state cycle. These results suggest that
in real, biological genetic networks, there must be a special subset of logical rules
that will produce the above described overall features.

Currently we are developing algorithms that can generate directed “genetic
network” graphs with other desirable features, such as predetermined regulatory
output distributions, selected average circuit sizes,  and asymmetric logical function
distributions.

Large scale gene expression measurements will soon allow the
determination of other overall features of the cell cycle that can be used to "update"
the overall rule distribution of the "realistic network". These features include (1) the
number of differentially expressed genes between alternative cell cycle attractors
(i.e., various differentiated cells) and (2) the overall time distribution of cycling
genes and parameters.

3. Using “realistic networks” for modeling carcinogenesis.

Malignant transformation was modeled as a “phase transition” of the state
cycle attractor of Boolean genetic networks by Kauffman14.  The extent to which
Boolean genetic networks represent the actual cell cycle has not been addressed
experimentally yet. In this section, we outline the expected changes in large scale
expression patterns during malignant conversion depending on the nature of
transition in the underlying genetic network. Results from the literature supporting
different classes of malignant transformation are also listed.

Let us consider carcinogenesis as a transition from the normal to the
neoplastic cell cycle. In terms of genetic networks, there are three possible
mechanisms of this transition, each of which may represent real tumorigenesis.

(1) The cell cycle attractor of normal and neoplastic cells may essentially
be the same. Transformation by an oncogene induces permanent changes in the state
of downstream genes and rules without driving the system from one state cycle
attractor to another one. In this case the downstream changes depend entirely on the
inducing oncogene. If the oncogene is turned off, the downstream changes
immediately go back to their preneoplastic state, and one would expect the cell to
display a normal phenotype again. In fact, this was demonstrated recently by the
induction of reversible tumorigenesis in mice by conditional expression of the
HER2/c-erbB2 receptor tyrosine kinase15. Using a tetracycline repressible promoter,
Beckers and coworkers have overexpressed this oncogene and transformed NIH-3T3
fibroblasts by withdrawing the suppressor tetracycline. Upon readdition of
tetracycline, the expression of the oncogene was suppressed, and the cells reverted to



the non-neoplastic phenotype. Whether neoplastic transformation by a single
oncogene is  the basis of some forms of human cancer remains to be established. It
remains to be seen whether conditional overexpression of other oncogenes leads to
reversible transformation as well. The therapeutic implication from this model is
that these types of tumors, if they exist, could be treated by targeting the “master
switch” oncogene. Parallel measurements of a large number of “biological
parameters” would reveal the following features in these tumors: (a) most or all
differentially expressed genes or other biological parameters in the tumors are
permanently ON during the neoplastic cell cycle; (b) the time dependent expression
pattern of all cycling parameters, and the actual length of the cell cycle is the same
or similar in the normal and tumorous cells;  and (c) knocking out a differentially
expressed tumor gene will have a permanent effect on the downstream regulated
elements and the pattern of permanent changes could be used to work out the
hierarchical order of oncogene activated genes, eventually leading to the
identification of the transforming gene. In a variation of this model, a combination
of two or more permanently expressed oncogenes would induce transformation
without driving the cell into an alternative state cycle attractor. In this case the
identification of the oncogenes might be somewhat more difficult but the overall
features of the network should remain the same.

(2) The second mechanism by which a single oncogene might cause
transformation is by forcing the system to leave one state cycle attractor and flow
into another one. Once the genetic network enters the attractor basin of a different
state cycle attractor, it might undergo a profound reorganization and, without
intervention, might unavoidably fall into the new state cycle. The length of this
new state cycle may be significantly shorter then the previous one (i.e. faster cell
cycle),  it may be more resistant to outside perturbations, and less prone to enter
resting, G0 - type periods. The expected experimental features of these tumors are:
(a) there will be several new cycling parameters appearing in the neoplastic cell
cycle; (b) the time dependent expression pattern of all cycling parameters will be
different between normal and tumorous cells, as it is reflected by cluster analysis of
coregulated genes;  (c) since the neoplastic cell is completing the cell cycle by
different intermediate states, the number of states and the length of the cell cycle is
likely to be different from that of the normal cells; and (d) very often knocking out a
differentially expressed tumor gene or inhibiting another biological parameter will
not  have any effect on the expression pattern of other genes . As for therapeutic
implications we are currently addressing the issue by using “realistic models” to
determine whether removing the oncogene can drive the system back from the
neoplastic state cycle attractor to the normal one, or this will force the system into a
third, different attractorc . Our results will indicate if  targeting the transforming
oncogene could provide a cure for these types of tumors as well.  Experimental
results suggest that these tumors might not be reversible by removing the
oncogene. For example, the loss of the ras  oncogene does not lead to the reversal of
neoplastic phenotype in human tumor cells16.
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(3). The third mechanism involves a series of perturbations. This model
does not require the presence of a “master switch”, or full oncogene. Instead, it
assumes that a series of perturbations in the biological parameters, the genetic basis
of which can be termed as “partial oncogenes”, will drive the system into the basin
of attraction of a new state cycle of neoplastic features. The individual perturbations
may not cause any phenotypical change by themselves. The quantitative features of
the cell cycle of this type of neoplasia will be very similar to the one described in
point 2.

Here we would like to emphasize that different cancer models produce
different quantitative features that could be readily tested by today’s large scale
quantifying technologies such as DNA chips. Therefore, the predicted features could
soon be tested. In fact, for yeast, the DNA chip covering its complete genome is
already commercially available from Affymetrix17. Using this methodology one can
easily quantitate the expression level of all genes along the yeast cell cycle with the
necessary time resolution.

The three possible mechanisms of carcinogenesis outlined above represent
fundamentally different etiology and probably call for fundamentally different
therapeutic approaches as well. In the second and third mechanisms, the complexity
of rearrangements of gene regulatory pathways during carcinogenesis can not be
assessed by traditional methods focusing on one or a few regulatory pathways,
oncogenes, etc. In these, the whole regulatory network becomes rearranged.
Modeling with “realistic models” can  give us the first approximate answers for a
series of questions with practical implications for cancers involving cell cycle
attractor transitions.

The first group of modeling questions are related to the nature of oncogenes
and to the identification of “partial oncogenes”. Does the stability of cell cycle
attractors increase with increasing k values? How many changes in the states of
biological parameters are needed to induce a cell cycle attractor transition ? How can
we identify biological parameters that individually do not induce cell cycle attractor
transition but together  drive the cell into the basin of attraction of another cell cycle
attractor ?

Results obtained by modeling for the second group of questions will have
an impact on the molecular diagnosis of cancer.  What is the number of
differentially expressed genes or biological parameters between two cell cycle
attractors, where the second attractor is the result of a transition induced by changes
in a certain number biological parameters in the first attractor ? Furthermore, how
many changes can a cell cycle attractor tolerate amongst its cycling and non-cycling
parameters without moving to another attractor ? The numerical results answering
these questions will provide an estimate for the expected number of differentially
expressed genes in neoplastic versus normal tissue.

The third group of questions deals with therapeutical strategies. If we drive
a cell cycle attractor to an alternative attractor by a change in one or more biological
parameters, can we drive the system back to the original attractor by reversing the
same changes that induced the first attractor transition? In medical terms: What is
our chance to reverse cancer by knocking out the oncogene(s). We can also estimate,



by modeling, the number of changes in biological parameters that are necessary to
drive the neoplastic cell cycle into an alternative, preferably normal, cell cycle
attractor. Is there any correlation between the average number of differentially
expressed genes/ biological parameters in cancer and the number of required changes
to drive the cell cycle attractor to an alternative attractor ? In other words, these
modeling efforts will provide an estimate for the expected complexity of effective
therapeutic strategies.

In the previous section, the term  “gene” and “biological parameter” were
often used side by side, although the group of genes is a subset of all biological
parameters. A model incorporating all biological parameters is obviously preferable
but since the current technology allows massive parallel measurements of only gene
expression, we discussed how the above issues can translate into changes in gene
expression patterns.

This leads us directly to the next important issue. Gene expression is only
one manifestation of “biological parameters”. Depending on the actual rule
distribution of the living cells, rearrangements may occur at any level of the
“biological parameters”. Consequently: We might find most cancer related changes
(a) mainly in gene expression, (b) mainly at another level of “biological parameters”
or (c) at a combination of the two. A rigorous comparison of the regulation of gene
expression, protein expression, protein activation, etc., might reveal different
populations of biological parameters, that may be involved in carcinogenesis to a
different extent.

The practical implications of this problem are evident. One of the fastest
developing fields in molecular biology, for obvious reasons, is the massive parallel
quantitation of expression levels and detection of mutations in mRNA samples.
Large scale quantitation of protein levels, and especially the simultaneous
measurement of a large number of biochemical reactions, are far behind in
development. For example, within a reasonably short time it will be possible to
quantify the entire transcriptome (all transcribed genes11) with sufficiently high
time-resolution of the human cell cycle. However, information about changes in
protein levels, posttranslational modification states, etc., will be more limited.
Therefore, our chances to identify important cancer associated changes will be high
if those are mainly manifested at gene expression or gene mutation levels. If the rule
distributions regulating different groups of biological parameters, i.e., mRNA
levels, protein levels, etc., are not identical, then "realistic modeling" may give
useful estimates about the distribution of cell cycle attractor transition-associated
changes. The actual value of these estimates might help cancer researchers and the
biotechnology industry to make strategic decisions about the efforts invested into
different approaches of large scale measurements.

We believe that developing therapeutic strategies for complex diseases will
require computational modeling approaches. In this paper, we have outlined a
general strategy how "realistic Boolean genetic networks" can be constructed.
Choosing an appropriate set of biological parameters, these models will provide
time dependent expression patterns that could be compared to experimental data.
This will help with the identification of restricted rule sets that will save significant



computational power, bringing the model into the realm of realization. Once reliable
"realistic models" are built, they can be used to assess the complexity of regulatory
rearrangements in cancer, and they can help to test multiple combinatorial
therapeutic target strategies.
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Figure 1. Distribution of probability that a variable changes its value 2, 4.....L
times during a complete state cycle, where L is the length of the complete state
cycle. On the horizontal axis we plotted the number of times (C) a variable changes
its value during a complete state cycle normalized for the length of the complete
period (L). On the vertical  axis we plotted the probability of the given number of
direction changes. The figure shows that the number of direction changes peaks
around the half of the cycle length. The random network has 200 Boolean variables
with two-input per variable (k=2) constructed from 8 k=2 canalyzing rules that
depend on both of its inputs. The histogram is obtained by averaging over 3000
networks. For each of the networks we find cycles starting from 500 randomly
selected initial state for the Boolean variables. The two curves are obtained from
averaging over cycle period from 8 to 16 (filled squares) and from 16 to 32 (filled
circles). For these two cases, the percentage of Boolean variables that do not change
in the cycle are 74% and 67%, respectively.
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