
An Editing Environment for DNA Sequence Analysis and

Annotation

(Extended Abstract)

Edward C. Uberbacher, Ying Xu, Manesh B. Shah, Victor Olman,

Morey Parang, and Richard J. Muraly

Computer Science and Mathematics, and yLife Sciences Divisions

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6364, USA

This paper presents a computer system for analyzing and annotating large-scale
genomic sequences. The core of the system is a multiple-gene structure identi�-
cation program, which predicts the most \probable" gene structures based on the

given evidence, including pattern recognition, EST and protein homology informa-
tion. A graphics-based user interface provides an environment which allows the

user to interactively control the evidence to be used in the gene identi�cation pro-
cess. To overcome the computational bottleneck in the database similarity search

used in the gene identi�cation process, we have developed an e�ective way to par-
tition a database into a set of sub-databases of \related" sequences, and reduced
the search problem on a large database to a signature identi�cation problem and

a search problem on a much smaller sub-database. This reduces the number of
sequences to be searched from N to O(

p
N) on average, and hence greatly reduces

the search time, where N is the number of sequences in the original database. The
system provides the user with the ability to facilitate and modify the analysis and

modeling in real time.

1 Introduction

As genome centers world-wide scale up to produce millions of bases of DNA
sequence each day, developing fast and high-quality analysis and annotation
tools becomes one of the most challenging problems facing the bioinformatics

community. We have developed an editing environment for computationally
analyzing and annotating genomic sequences. The core of the system takes as
input the predicted exons, predicted gene boundaries, partial gene segments
(possibly identi�ed based on homology information), and the user's input, and
constructs a most \probable" (multiple) gene structure. The user interface
provides a graphical editing environment, which allows the user to interactively
and iteratively control what and how the available information should be used
in the gene modeling process, in an interactive and iterative manner. This
environment allows the user to analyze and annotate a genomic sequence on a
multi-megabase scale.

The system consists of �ve main modules. The exon prediction module

predicts the coding exons; each exon is predicted with a con�dence value and



a �xed translation frame. Currently this is done using the GRAIL II exon
prediction program (version 1.3) 1;2, and it is being extended to include other
exon prediction programs. The database search module locates sequences with
high similarity scores with each of the predicted exons, using BLASTN (ver-
sion 1.4.9) 3 and FASTA (version 2.0) 4 in both the dbEST database 5 and the
Swissprot database, respectively. The information extraction module processes
the database search results (alignments) to extract and organize the informa-
tion related to gene modeling; The information may include indications of the
boundaries of exons, evidence of a predicted exon being a true exon, the po-
tential boundaries of genes, the minimal extent of a gene, and indications of
false exon predictions and missing exons. The graphical editor allows the user
to edit the extracted information and to add new information or constraints,
based on the user's domain knowledge. The gene modeling modulemakes a pre-
diction of the most \probable" (multiple) gene model based on the predicted
exons, extracted database search information, and user input. The gene iden-
ti�cation problem is formulated as a combinatorial optimization problem, and
solved using a dynamic programming algorithm. Figure 1 schematically shows
the structure of the system.

In an interactive environment, it is highly desirable to have the system
respond quickly to user input. The slowest part of the system is the database
search module. One of the main reasons for this is the amount of data a search
program like BLASTN has to examine. For example, the dbEST database
currently contains over one million entries, and it takes dozens of seconds on
a SPARC 20 workstation to compare one typical exon to the database (long
genomic regions may contain many candidate exons). One way to overcome
this bottleneck is to preprocess the database in such a way that only small
subset of the database needs to be searched for a given query sequence, and
this small subset of the database can be quickly identi�ed. We have imple-
mented this idea on the dbEST database, and preliminary test results are very
encouraging.

2 Sequence Analysis in an Interactive Environment

This section �rst briey reviews the gene modeling algorithm (corresponding
to the four modules described above except the interface module) 6;7 based
on exons predicted by GRAIL II and database search results on dbEST and
Swissprot, and then describes the graphic editing environment for sequence
analysis and annotation.



Figure 1: A schematic of the editing environment for genomic sequence analysis and anno-
tation.

2.1 Reference-based gene modeling

Our gene modeling program uses GRAIL-predicted exons as the basic build-
ing blocks, and applies information extracted from database similarity search
results to guide gene modeling. The extracted information can be used to bet-
ter determine the correct boundaries of exons, to determine falsely-predicted
exons and missing exons, and to suggest potential boundaries of genes.

Figure 2 can be used as an example to illustrate the basic idea of the
gene modeling process of the system. Predicted exons are searched against
the dbEST database and the Swissprot database using BLASTN and FASTA,
respectively, and the matched ESTs or proteins are locally aligned against
the genomic sequence (as shown in Figure 2). Overlapping ESTs determine
the minimal extent of a gene, i.e., exons within each minimal extent region
can only belong to one gene. Long stretches of ESTs (ESTs matching more
than one exon) may provide indications of falsely-predicted exons and missing



Figure 2: A schematic of information extraction. The X-axis represents the sequence axis.
Each rectangle represents a predicted exon candidate, and overlapping rectangles represent
di�erent boundary predictions of one presumed exon. The height of a rectangle represent

the con�dence level of the prediction. Each horizontal line represents an EST sequence
matching the corresponding part of the exons above it. ESTs can provide an indication of

a gene extent, and verify or contradict an exon's prediction or edges. Homologous proteins
can provide similar information.

exons if EST segments contradict predicted exons or exon edge predictions (as
shown in Figure 2). The 30-most extent of a group of overlapping 30 ESTs
generally indicate the 30-end of a gene though their 50 counter parts do not
necessarily indicate the beginning of a gene. By combining the 30 ESTs, the
minimal extent of genes, and a coding strand determination function 2, we
can partition the given DNA sequence into a series of maximal gene extents,
i.e., a gene within a maximal gene extent cannot extend beyond this region.
Typically, a maximal gene extent corresponds to a region that usually contains
one gene, but could possibly contain several genes, given the current coverage
of ESTs. All this gene-structural information is extracted by the information

extraction module. Using all this information, we have formulated the multiple
gene modeling problem in each maximal gene extent region (see Figure 4) as
the following optimization problem. We call each EST (or protein sequence)
matching an exon a reference model.

Given are a set of K predicted exons with scorep(E) representing the
prediction score of a predicted exon E, and a list of M reference models
fR1; :::; RMg. Each exon E has a score score(E;R) with respect to each of its
reference model Ra. For the simplicity of discussion, we de�ne score(E; ;) =
scorep(E) and always use R0 to represent ; as a special reference model. The
goal is to select a list fE1; :::; Eng of nonoverlapping exon candidates from

ascore(E;R) = �1 if R does not match E.



the given exon set, a mappingM from fE1; :::; Eng to the (extended) refer-
ence model list fR0; R1; :::; RMg, and a partition of fE1; :::; Eng into D (not
predetermined) sublists fE1

1; :::; E
1
n1
g; :::; fED

1 ; :::; E
D
nD
g (corresponding to D

(partial) gene models) in such a way that the following function is maximized,

maximize
PD

g=1(
Png

i=1 score(E
g
i ;M(Eg

i )) +
Png

i=2 link(M(Eg
i�1);

M(Eg
i )) + Ps(E

g
1
) + Pt(Eg

ng
))

(P )

subject to: (1) l(Eg+1
1 )� r(Eg

ng
) � L, for g < D,

(2) Eg
ng

and E
g+1
1 not belonging to the same minimal

gene extent, for g < D,
(3) Eg

i is spliceable to Eg
i+1, for all i 2 [1; ng � 1]

and g � D

where l(E) and r(E) are the left and right edges of an exon candidate, respec-
tively, link(X;Y ) is a reward factor when X = Y and X 6= R0, and is zero
otherwise, Ps() and Pt() are two penalty factors for a gene missing the initial
or terminal exon, respectively, and L is the minimum distance between two
genes. For the de�nition of two exons being spliceable, we refer the reader to
6.

By solving this problem, we can construct an optimal gene model within
each maximal gene extent, based on the given information. This problem can
be solved by a fast dynamic programming algorithm6.

2.2 The graphical editor

The system �rst constructs an optimal multiple-gene structure fully auto-
matically using the predicted exons and the information extracted from the
database search results, and display the predicted gene structure (see Figure
4) to the graphical editor as the baseline for the further re�nement, which is
done interactively between the system and the user. The graphical editor pro-
vides an environment for the user to easily edit the information to be to used in
the gene modeling process. Currently the system allows the user to (a) modify
the exon candidate pool generated by the exon prediction module; (b) modify
the predicted gene boundaries by the information extraction module; (c) to
threshold the alignments to be used; (d) select or eliminate ESTs or reference
components. As the user makes the modi�cations, the system automatically
updates its information pool by executing the information extraction module.
Figure 3 shows the ow of control and data of the system. Figure 4 illustrates
a part of the graphical interface.



Figure 3: Control and data ow. The solid and dotted arrows represent the ow of control
and data, respectively.

2.3 System implementation

The system has been implemented within the JavaGRAIL architecture, a Java
application, at ORNL. JavaGRAIL provides an interactive environment for
several types of analysis including homology-based multiple-gene modeling for
very large sequences. The analysis modules are encapsulated as Java Remote
objects and as CORBA objects, since it is likely that both kinds of distributed
object environments will become prevalent. Thus, irrespective of the protocol
used, other developers can incorporate access to our analysis modules into their
systems. In addition, a traditional socket- based client/server system is also
implemented.

Exon prediction and homology searches involved in the gene modeling
generate a substantial amount of information which needs to be stored for use
in gene modeling and re�nement. The bulk of this data is retained by the
server and only the necessary data and context information is sent back to
the client. During the process of gene model re�nement by the user, the client
needs to send to the server only the context information and the gene modeling
parameters selected by the user. The user can perform several iterations of gene
model re�nement. At the end of the analysis session, this data is passed back
to the client, which the client saves on disk for future use.

JavaGRAIL represents the next generation of the XGRAIL sequence anal-
ysis system. It is built using the platform-independent, web-based Java lan-



Figure 4: Information editing. The solid bars in both the top and the bottom represent

the positions of the annotated GenBank coding exons in the forward and reverse strand,
respectively. The solid bars in the next-to-top and next-to-bottom rows represent the exons

in the predictedgenemodels, includingnon-codingexons. Each set of bars connectedthrough
a line represent one genemodel. The hollow rectangles represent the predictedGRAIL exons.
The short lines (or dots) represent the matched ESTs. The boxes (alternately hollow and

solid) in the middle represent boundaries of maximal gene extent, within which gene models
are built. A user can modify the boundaries of genes, bboundaries of maximal gene extent,

threshold the ESTs to be used, select individual ESTs or reference models, modify the exon
candidates or their boundaries, etc.



guage, making it portable. It is a front-end to a distributed object architecture,
using Java (and CORBA) Remote Objects for accessing sequence analysis ser-
vices and data. Distributed objects make it convenient to develop complex
systems using plug-and-play paradigm, by combining several simpler compo-
nents or objects together. JavaGRAIL currently supports the services devel-
oped and maintained at ORNL, namely, GRAIL exon prediction, GenQuest
database search engine, homology-based multiple gene structure identi�cation.
Access to other exon and gene prediction systems, and other kinds of analysis
engines will be added later.

3 Database Partitioning for Fast Similarity Search

The computational bottleneck of the system is sequence similarity search. To
solve this problem, we pre-process the database in such a way that only a small
(related) subset of the database needs to be searched for a given query. This
section outlines this implementation on the dbEST database.

3.1 Partition of dbEST database

The EST database can be partitioned into a set of sub-databases such that
no two sequences from di�erent sub-databases have a BLASTN score higher
than some pre-set parameter s (we also used the p-score as a part of the
thresholding), and two sequences S and S0 in the same sub-database either
have an BLASTN score above s, or there exits a chain of sequences S1; :::Sn
such that the BLASTN scores between S and S1, Sn and S0, and all Si and
Si+1, i 2 [1; n � 1], are above the threshold s. Note that if we have such a
database partitioning, searching the EST database can be done by �rst identi-
fying one or potentially several sub-databases and then searching the identi�ed
sub-database(s).

We have implemented this idea on the EST database as follows. We �rst
randomly select one sequence in dbEST, and run BLASTN using it as the query
sequence to �nd all the as yet unfound sequences with BLASTN alignment
scores above s (we call them related sequences); Then select one of the newly
found sequence as the query, and repeat this process. This process continues
until no more sequences can be added to the tree. This tree forms one sub-
database. Then we can repeat the above by selecting an unfound sequence as
the query until no unfound sequences are left. This process can be illustrated
by the following tree-based search structure, where each node represents a
query sequence, and all its children nodes represent its matched (unfound)
sequences.



Figure 5: Construction of sub-database of \related" sequences. Each node in the tree repre-
sents a sequence, and the children of each node represent all the (as yet) unfound sequences

with alignment scores above some threshold.

The following pseudo-code describes this procedure.

Procedure tree based search (query)

Step 1: get all unfound related sequences (query; list of sequences).
Step 2: store all sequences into subdatabase (list of sequences).

Step 3: while (list of sequences 6= ;)
query  �rst sequence (list of sequences);
remove query from list of sequences;

tree based search (query).

In the actual implementationb, instead of selecting one newly found se-
quence, we append a number of sequences to form the query sequence. This
speeds up the process. In our current implementation, we append 30 sequences
to form the next query sequence. By repeating the above procedure, we can

bRepeats are removed before we run the partitioning algorithm.



partition a database into a set of subdatabases of related sequences. Currently
it takes about one day to partition 10% of the dbEST database on a single-
processor SPARC 20 workstation. As new sequences are added to dbEST, we
don't need to re-partition the database, instead we only need to assign the
new sequences to the \correct" sub-databases, and probably have to merge
some of the sub-databases if a new sequence matched sequence from di�erent
sub-databases. Overall repartitioning can be carried out periodically.

3.2 Searching the partitioned database

The key for identifying the \correct" sub-database(s) to search for a given query
sequence is to design a distinguishing signature for each sub-database. We have
used the list of the M most frequent twelve-mers of each sub-database as the
signature of the sub-database (in our current implementation, M � 10000).
When given a query sequence, we calculate the number of exact matches of
the twelve-mers of the query sequence with each of the signatures, and use the
one with the highest number of matches as the identi�ed sub-databases (to be
safe, we can search a few sub-databases with the highest matches). Test results
have shown that this signature is quite e�ective in identifying the \correct"
sub-database(s).

To make the signature identi�cation process fast, we have pre-processed
all the signatures using a technique described in 8 so that each comparison
between the query and a signature takes only linear time of the query size
(independent of the signature size).

Note that the total search time depends on the total time for searching all

the signatures and the total time for searching the identi�ed sub-database(s).
A balance between these two times will make our search very e�cient. Based on
our tests, many of the sub-databases contain only a few sequences, and hence
this makes the number of sub-databases large. We are currently experimenting
with di�erent methods to merge some of the small sub-databases to make their
size as close to

p
N as possible, without losing the identity of the sub-database.

After merging, we have roughly about O(
p
N ) sub-databases, and on average,

each of them has about O(
p
N ) sequences. Hence on average, we can expect

that for a given query, we need to compare about O(
p
N) signatures, and

search about O(
p
N ) sequences in the identi�ed sub-database(s). On a test on

10% of the dbEST database (about 100000 sequences), we partitioned it into
about 1000 sub-databases.



4 Summary

We have developed an interactive environment for genomic sequence analysis
and annotation, which allows the user to incorporate his/her domain knowl-
edge into the gene modeling process in an interactive manner. By combining
statistical information-based prediction methods, sequence alignment informa-
tion with ESTs and protein homolog, and human domain expertise, this user-
friendly environment should provide a powerful tool to molecular bioloists for
analyzing and annotating DNA sequences in a timely fashion.

Acknowledgements

This research was supported by the United States Department of Energy, under
contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc.

1. E. C. Uberbacher and R. J. Mural, \Locating Protein-coding Regions
in Human DNA Sequences by a Multiple Sensors-neural Network Ap-
proach", Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 11261 - 11265,
1991.

2. Y. Xu, R J. Mural, J. R. Einstein, M. B. Shah, and E. C. Uberbacher,
\GRAIL: A Multi-Agent Neural Network System for Gene Identi�ca-
tion", Proceedings of The IEEE, Vol. 84, pp. 1544 - 1552, 1996.

3. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
\Basic Local Alignment Search Tools", J. Mol. Biol., Vol. 215, pp. 403
- 410, 1990.

4. W. R. Pearson and D. J. Lipman, \Improved Tools for Biological Se-
quence Comparison", Proc. Natl. Acad. Sci. USA, Vol. 85, pp. 2444 -
2448, 1988.

5. M. S. Boguski, T. M. Lowe, and C. M. Tolstoshev, \dbEST { Database
for Expressed Sequence Tags", Nat. Genet., Vol. 4, pp. 332 - 333, 1993.

6. Y. Xu and E. C. Uberbacher, \Automated Gene Identi�cation in Large-
scale Genomic Sequences", Journal of Computational Biology, Vol. 4, 3.
pp. 325 - 338, 1997.

7. Y. Xu, R. J. Mural and E. C. Uberbacher, \Inferring Gene Structures in
Genomic Sequences Using Expressed Sequence Tags", The Proceedings of
the Fifth International Conference on Intelligent Systems for Molecular

Biology, pp. 344 - 353, AAAI Press, 1997.
8. A. V. Aho and M. J. Corasick, \E�cient String Matching: An Aid to

Bibliographic Search", Communications of ACM, Vol. 18, 6, pp. 333 -
340.


