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Appendix: A Circle Algorithm

From the rotation matrix, the points (Xn; Yn) on the circle of radius R can be
generated by following di�erential equations with � being a di�erential polar
angle between the points.

Xn+1 = Xncos� � Ynsin�

Yn+1 = Xnsin� + Yncos�
(1)

Letting � = 1/R radian, which gives contiguous points, and using Taylor's
expansion for sin� and cos� up to the second order, where the accumulating
error of the order �3 is negligible for n � 2�R, we get the approximation form
of Eq.1.

Xn+1 �Xn =
�Yn

R
�

Xn

2R2

Yn+1 � Yn =
Xn

R
�

Yn

2R2
(2)

This is the di�erential equation for the generation of an arc. We separate
the fractional part of Xn and Yn into two positive numerators on denominators
of R and 2R2 using integer registers, ixn; iyn; fyn; fyn; gyn; gyn.

Xn = ixn +
fxn +

gxn
2R

R
; Yn = iyn +

fyn +
gyn
2R

R
(3)

Since the changes of the coordinate in each step are always decimal frac-
tions, we only calculate the fractional part.6 When fxn reaches to R it carries
to ixn if it reaches to R, and it borrows from if negative. The method is
simpli�ed by ignoring terms smaller than 1=R in Eq.2.

fxn+1 � fxn = �iyn

fyn+1 � fyn = ixn
(4)

In each step, carries and borrows of numerator registers fxn and fyn on a
denominator R generate the next point of arch. By incorporating the second
fractions, gxn and gyn that carries to fxn and fyn in Eq.3, we can calculate
accurate points of arch. Additional calculations are obtained from Eq.2.

gxn+1 � gxn = �2fyn � ixn

gyn+1 � gyn = 2fxn � iyn
(5)
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4.3 Graphics Acceleration Hardware

Flobr 19 has reviewed the current three-dimensional graphics technologies,
OpenGL, QuickDraw3D(Apple Computer Inc.), and Direct3D(Microsoft Corp.),
with their acceleration hardware on personal computers. The hardware pro-
vides di�erent levels of functions: calculation of geometry and lighting color
composition, rasterization of primitives, and frame-bu�er control with quick
pixel operations. Their advanced polygon function can be utilized in our graph-
ics library by mapping a frame bu�er on the acceleration hardware into the
main memory to be accessed as an image bu�er. The point list will be cached
in their local memory for the fast rendering and geometry calculations. These
functions can be implemented as plug-in extension modules to our graphics
library that provide a seamless environment on variety of di�erent hardware
types in both software development and operational tasks.

Additionally, our circle algorithm used in the scan-conversion of a sphere
without shift operation is more suitable for low-cost hardware implementation
than the other algorithms. The normal vectors on the surface of the sphere
can also be obtained for further lighting calculations.

5 Conclusion

Our graphics library, with its novel functions has been successfully imple-
mented to provide high-throughput rendering for a molecular structure viewer
on conventional computer hardware. The point list facilitates exible man-
agement of the display list for molecular graphics. The scan-line conversion of
spheres and cylinder primitives and the z-bu�ered bit-block transfer increases
the rendering performance. Although our library lacks smooth-shaded and
texture-mapped polygons, extension plug-in modules can supply those func-

tions for a runtime application. The design of our graphics library is gener-
ally useful for software systems with portable three-dimensional graphics. The
source code for our software is available upon e-mail request and our molecular
structure viewer will be released at ftp://etlport.etl.go.jp/pub/bioinfo.
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strated by the molecular graphics system MIDAS 12 with its modular software
design. Therefore, several general graphics libraries, such as PHIGS13, PEX14,
and DORE16 have been designed with an object-oriented display list database.
In this approach, the hardware acceleration have been necessary for interactive
rendering with the sphere and cylinder primitives that are made up of poly-
gons. Another issue is the required exibility of the display list17. For example,
changing the representation of the molecular model from a built-in wire frame
to a ball-stick model requires a reconstruction of the display list. Additionally,
these graphics libraries have not been adapted to personal computers.

OpenGL and its predecessor, IRIS GL (Silicon Graphics Inc.), have pro-
vided exible management of the display list to the application program by
the immediate rendering of graphics primitives with state variables for their at-
tributes. However, the rendering of spheres and cylinders still depend on poly-
gons and therefore hardware acceleration. Consequently, Mesa18, a portable
OpenGL implementation, is still unable to provide practical rendering perfor-
mance.

Our graphics library has been designed to solve this problem by introducing
the direct scan-conversion of spheres and cylinders. The API of our graphics
library is similar to the OpenGL, which facilitates a porting of the applications.
It is also possible to adapt to OpenGL-based systems, providing the OpenGL
interface with greater ease of use.

4.2 Comparison with RasMol

In contrast to those graphics libraries, the programs on personal computers
have been developed di�erently, with an emphasis on optimizing code for spe-
ci�c graphical tasks. For instance, RasMol is one of the most successful pieces

of software in molecular biology with its outstanding rendering performance.
We have also found novel technologies for raster graphics in the source code of
RasMol. Although, it was di�cult for us to modify the program for some cus-
tomized functionality without a substantial rearrangement of its source code.

We propose the use of a point list to separate the graphics rendering code
from protein structure data without performance loss. RasMol requires the
introduction of a twin-line primitive that paint half of a line with di�erent color.
The point list allows this additional primitive as well as a exible manipulation
of the display list in an application program.

Recently, OpenGL introduced the vertex array that is similar to our point
list. However, it is rather complicated and lacks the support of the screen
coordinate that is indispensable for the rearrangement of RasMol.
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Table 2: Rendering Performance Benchmark Test

software wire frame VDW surface ball-stick

MOSBY 10.3 4.0 1.3

RasMol 30.0 6.0 12.0

MOLMOL 10

(OpenGL)
or InsightII 11

16.0 0.05 � 0.5 0.2 � 0.7

with a

graphics accelerator * >400 0.8 � 8.2 6.9 � 11.0

Numbers are in 1000 atoms per second. They are estimated from the elapsed
time in rendering for PDB data 1ATN consisting of 4945 atoms and 5126

bonds. An ordinary workstation, INDY , Silicon Graphics Inc., equips MIPS

R4000 ( 100MHz ) with FPU, 64MB main memory, 8k data + 8k instruction
cache, 8 bit video graphics (1280x1024) is used. *: The results with a graphics

accelerator were obtained on another machine, an INDIGO Solid Inpact2 with

MIPS R10000, which is about 5 times faster in general processing. A moderate
and the fastest numbers were shown depending on the quality of sphere divided

into polygons.

The graphics rendering benchmark results (Table2) on a machine without
graphics acceleration hardware showed a better performance than applications
built on the OpenGL for VDW and ball-stick. However RasMol is the fastest,
current rendering performance of our viewer was acceptable for practical use.

There are several extension plug-in modules which can enhance the func-
tions of our viewer program as described previously 2. The electron density
plug-in can read a density map �le and display its iso-surface on the molecular
model. The Supperposition plug-in works for �tting two selected fragments of
molecules. Filter plug-ins can be prepared to access �les in di�erent formats.
A variety of extension modules with molecular modeling and visualizations of
calculation results with the atomic coordinates are possible to enhance func-
tions of our viewer.

4 Discussion

4.1 Comparisons with Other Graphics Libraries

Most graphical application program in various �elds maintain an underlying
display list database to be depicted and manipulated. It was also well demon-
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Figure 4: MOSBY, a molecular structure viewer. An insulin dimmer is depicted with bound-

ary outlines between subunits. A table window lists the atomic coordinates, ts amino acid

sequence, and groups of representations.

� A table window provides the amino acid sequence view of the protein.
The selection of residue also cooperates with the molecular model win-

dow, and vice versa.

� The rock animation with four cyclic frames of horizontal rotation is al-
ways smooth for large molecules.

� Improved quality of the cylinder and sphere.

� The edge-line between the primitives 7 makes very clear and easily dis-
tinguished pictures especially in gray scale.

� Support of Large molecular pictures with up to � 100,000 atoms and �
10,000 residues in an image data of 1600x1200 pixels by default.

� Plug-in style extension modules.
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Table 1: The Application Program Interface of The Graphics Library

category functions

Rendering

YovMove3w(), YovLine3w(), YovPoly(), YovVert3w(),
YovGon(), YovPutStr(), YovSphere3w(), YovTube3w(),
YovCircle2w(), YovCirclef2w(), YovDots2i(),
YovBox2i(), YovFBox2i(), YovRBox2i(), YovRFBox2i(),
YovClear(), YovClearView(), YovClearBox2i()
( tailing 3w can be either of 3w,3s,3i,2w,2s,2i )

Point List YovCreatPt(), YovPtWorld(), YovPtScreen(),
YovMove(), YovLine(), YovVert()

Graphics

Attributes

YovSetPen(), YovSetEdge(), YovSetBack(),
YovSetAttr(), YovSetOpac(), YovSetLineWidth(),
YovSetDash(), YovSetBrush() YovSetRound(),
YovSetPattern()

World

Coordinates

YovWide(), YovDepth(), YovCenter3(), YovSee3(),
YovMag(), YovPan3(), YovProject3(), YovScreen2()
YovScreenDepth(), YivSize2Pixel(), YdvPixel2Size(),
YovViewport3(), YovWorld3(), YovClip2i(),
YovClipDepth(), YovPenPos3w()

Picking YovSetPickTag(), YovStartPick(), YovEndPick()

Image Buffer

Ccontrol

YbvCreateImage(), YovSetImage(), YovMapImage(),
YovShowImage(), YbvCreateSubImage(), YovImageSize(),
YovPutImage()

Window

System

Interface

YiwOpenWin(), YowCloseWin(), YowEnableWin(),
YiwMainLoop(), YowOnMouse(), YowOnKeyboard(),
YowOnRepaint(), YowOnResize(), YowOnNotify(),
YowSetInfo(), YawInfo(), YowDoRepaint(),
YiwCheckInput(), YowSetWin(), YiwWin(),
YowAdjustWin(), YiwWidth(), YiwHeight()

Figure 3: A Sample Source Code using the Point List. Two data is created in the point list

to draw a line that will be translated into the screen coordinate only if necessary.

long pt1,pt2;

/* create data */

/* in point list */

YovMove3w( 0.,0.,0.);

pt1=YavCreatePt();

YovMove3w( 1.,0.,0.);

pt2=YavCreatePt();

/* ex. do zoom */

YovMag(1.1, TRUE);

: : :

/* draw a line */

YovVert(pt1);

YovVert(pt2);

YovLine();
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support for smooth-shaded and texture-mapped polygons, but these functions
can be supported by an extension plug-in module for a runtime application
built on our library. There are Application Program Interfaces (APIs) for
normal vectors and texture coordinates, making it possible to render those
polygons in ways that are usually ignored. Taking advantage of the dynamic
linking functions provided by the operating system, a program can append the
functions of an extension plug-in module. Since the polygon-rendering code
in our library which is linked to the program is interchangeable, an external
module can replace it with another code which allows for smooth shading
and texture mapping. Thus, our graphics library determines its function at a
runtime of the application program incorporating with its extension modules.
This design has greatly simpli�ed the basic speci�cation of our graphics library.

3 Implementation

3.1 The Graphics Library

The graphics library was implemented in the C language on an X-Window
system running on several UNIX workstations with recent operating systems
(Silicon Graphics, Inc.; Sun Microsystems, Inc.; Hewlett Packard Co.; Digital
Equipment Corp.; and IBM-PC with Linux 9 ) using the Xlib library. More
than 16 Mbytes of main memory and an 8-bit color or gray-scale monitor are
required for the library to run. The API of our graphics library is summarized
in Table1 and a sample code using the point list is given in Figure3.

The graphical user interface (GUI) functions were also developed with the
graphics library and Xlib. This allows for a GUI application with a GUI de�-
nition �le and only a small amount of source code. Together with the dynamic
linking functions, the graphics library was organized into our programming li-
brary called ASHLEY, which stands for an application support hybrid library
for easy programming.

3.2 A Molecular Structure Viewer

A molecular structure viewer, MOSBY, has been successfully equipped with
the basic browsing functions for the atomic structure of proteins. Molecular
models of wire frame, ball-stick, tube, and VDW surface are supported with
real-time viewing manipulation with depth-cueing, clipping, and perspective
by mouse operations. Items in the tool bar at the left side select the mode of
mouse operation. (Figure 4). Special features in our viewer is as follows:
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Figure 2: The Typical Scan-conversion of a

Sphere. Scan lines with the same pixel length

have di�erent shadings. The number repre-

sents the z-component of the normal vector on

the sphere.

lines and circles, we have found an algorithm which is e�ective for the subpixel
calculations to improve the quality of the sphere (Figure 2). The algorithm
described in Appendix eliminates the shift operations in several similar works.5

It can readily be extended to the elliptical arch for the scan-line of a sphere
because the z-bu�er is in a �ner scale than pixel coordinates. The cylinder
primitive, for which the scan-lines are all elliptical arches, is also rendered by
this algorithm.

2.4 The Image Bu�er Con�guration

The image data can be allocated with the z-bu�er in the main memory as much
as possible that can also be used as frames of an animation. An additional
attribute plane can be used for applications to set arbitrary values for each
pixels of the image. On rendering primitives a speci�ed attribute value is
stored to the plane as well as the depth value to the z-bu�er. Setting the
subunit identi�cation code of the protein molecules to this attribute allows the
extraction of an outline for the di�erent subunits by comparing its adjacent
values 7 (Figure 4). We have con�gured 4 bits of this plane in the 16-bit
z-bu�er, as these attribute values leave a depth range of 12 bits.

2.5 Z-bu�ered Bit-Block Transfer

The image data rendered with z-bu�er values can be transferred to other im-
ages with z-bu�er tests. This allows for the quick duplication of a sphere
primitive. It can also be accelerated by hardware as well as the normal bit-
block transfer operation in the two-dimensional image. This is an abstracted
function for the use of template spheres that has also been employed by a
molecular viewer program ONIX 8.

2.6 Dynamic Linking Extension Module

We have applied a plug-in style software component architecture2 that extends
the functions of our graphics library. For example, our graphics library lacks
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Figure 1: The Block Diagram of our Graphics Library. The current implementation for

X-Window system includes a direct drawing of two-dimensional primitives using Xlib. The

font manager draws character text both for X-Window and the image bu�er.

provide a display list of graphical primitives, a coordinate in the connecting
objects which could be shared among graphics primitives appears many times
in each of the separated primitives and is calculated redundantly. In our graph-
ics library, the point list simply provides an index of those coordinates used
in rendering function, and the display list is built in an application program
(Figure3). It is important to have the subpixel fraction of the screen coor-
dinates for smooth animation on small rotations of graphics primitives. The
concept of the point list is also employed by Amulet 3 in the two-dimensional
graphics.

2.3 Scan-Conversion of a Sphere

Because each scan-line of a sphere forms an arch with a di�erent radius in the
x-z plane, the scan-conversion of a sphere is achieved by a digital di�erential
analyzer (DDA) for generation of the arch. While most graphics libraries
employ sphere and cylinder primitives made from polygons, which consume
a signi�cant amount of the processing resources, the direct scan-conversion is
practically e�cient also in RasMol.

Although Bresenham's algorithm4 is well known for the scan-conversion of
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Moreover, portability is the key to creating state-of-the-art software tools
which will become a source of discussion in the research community. If a
software program with innovative structure analysis and calculations were
portable, it would be of interest to various researchers for use in their area of bi-
ological research. Recent advances in technology for computer hardware have
improved a�ordable personal computers with necessary hardware for three-
dimensional graphics tasks. Thus, portable software tools in structural studies
for biomolecules are in great demand.

We have designed a graphics library that is portable among a wide range of
hardware platforms, as part of our new software-development project creating
molecular graphics tools for protein structure analysis and prediction studies.
Our goal is to provide a software platform which will run on common hardware
and will allow users to add new functions with only an average knowledge of
programming. In this project, we have designed our software system with
respect to two issues: portability and extensibility. Our method of the plug-
in style module extension by means of dynamic linking has been reported
previously 2. This paper describes our design of a portable graphics library for
a molecular structure viewer program with high-throughput rendering.

2 Designing the Graphics Library

2.1 Overview of Our Graphics Library

Our graphics library provides simple rendering functions in the speci�ed three-
dimensional world coordinates. Primitives of lines, boxes, character text, cir-
cles, polygons, spheres, and cylinders are supported. These primitives are
rendered into the o�-screen image bu�er that is then transferred to the raster
graphics hardware for display on a monitor. This simple design makes our
graphics library portable.

Figure 1 summarizes the block diagrams for our graphics library. The
world coordinate systems for graphical primitives are translated to the device-
dependent screen coordinates with a perspective or parallel projection and
depth cueing. The attributes of graphics primitives, color, line width, line
pattern, are the in-state variables used in rendering. The z-bu�er is used for
hidden surface elimination. The processor-intensive primitives such as curves,
surfaces, and lighting attributes are not supported (Table1).

2.2 The Point List

The point list is an array that maintains pairs of the world and screen co-
ordinates as an alternative to the display list. While most graphics libraries

2
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We have equipped our graphics library with e�cient functions so that a molec-

ular structure viewer program can provide both portability and high-throughput

rendering without hardware acceleration. The library renders graphics primitives

into o�-screen image memory with novel functions such as a point list for the

vertices of three-dimensional graphical primitives, scan conversions of sphere and

cylinder primitives, and z-bu�ered bit-block transfer. A molecular structure viewer

program was implemented with the graphics library, giving reasonable rendering

performance on conventional UNIX workstations with the X-Window system. The

use of dynamic linking also lends a exible extension facility to this software sys-

tem. An advanced polygon renderer can be provided as an plug-in style extension

module as well as other functional modules that are speci�c to the application pro-

gram. The design of our graphics library is not only e�ective in molecular graphics

but is also applicable for general three-dimensional graphics software systems.

1 Introduction

The application of computer graphics to molecular modeling and visualiza-
tion has successfully allowed a number of software systems to provide various
ranges of functionality. The real-time manipulation of graphical models is usu-
ally achieved by using hardware acceleration to render graphical primitives.
Graphics libraries ensure the compatibility and portability of the application
software, as well as a long lifetime for such software, even when there are
alterations in the hardware architecture.

While most interactive molecular graphics programs depend on hardware
acceleration, RasMol 1, a comprehensive molecular structure viewer program,
provides reasonably interactive three-dimensional graphics on ordinary work-
stations and personal computers without special hardware acceleration. With
the increasing demand for visualizing protein structures in molecular biology,
the program has been broadly used among a wide range of researchers. The
program renders molecular pictures into o�-screen memory without the use of a
conventional graphics library. In fact, no graphics library has allowed this kind
of rendering performance on systems without graphics acceleration. Although
graphics libraries provide abstracted interfaces to various kinds of accelera-
tion hardware, an e�ective new graphics library without graphics acceleration
hardware has been considered to be desirable for the advanced portability of
software systems.
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