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We have developed a new method for recognizing sites in three-dimensional protein
structures.  Our method is based on our previously reported algorithm for creating
descriptions of protein microenvironments using physical and chemical properties at multiple
levels of detail (including features at the atomic, chemical group, residue, and secondary
structural levels).   The recognition method takes three inputs:  a set of sites that share some
structural or functional role, a set of control nonsites that lack this role, and a single query
site.  The distribution of properties for the query site is compared to the distributions for both
sites and nonsites to determine the group with which it is most similar.  A log-odds scoring
function, based on Bayes’ Rule, computes a score that indicates the likelihood that the query
region is a site of interest.  In this paper, we apply the method to the task of identifying
calcium binding sites in proteins.  Cross-validation analysis shows that this recognition
approach has high sensitivity and specificity.  We also describe the results of scanning four
calcium binding proteins (with the calcium removed) using a three-dimensional grid of probe
points at 2 Å  spacing.  The probe points that  have high scores cluster around the true
calcium binding sites, with the highest scoring points at or near the binding sites.  The method
fails in only one case where a calcium  binding site is created by four proteins in the crystal
lattice, and thus not recognizable within the crystallographic asymmetric unit. Our results
show that property-based descriptions can be used for recognizing protein sites in
unannotated structures.

Introduction

Although they share the same important function of binding calcium ions, calcium
binding sites—local regions within proteins that bind calcium ions—differ greatly
in their three-dimensional structure.  Defining the three-dimensional (3D) structural
"motif" of calcium binding is important for understanding the functions of new
proteins that possess this motif, and for engineering novel binding capabilities into
proteins.  Investigations into the geometry and chemistry of calcium binding sites
have produced refined models of these sites, and some predictive capabilities.
Yamashita and colleagues found that metal binding sites (including calcium binding
sites) are centered in a shell of hydrophilic ligands, surrounded by a shell of carbon-
containing hydrophobic atom groups (Yamashita et al., 1990).  Based on this
finding, they defined a hydrophobicity contrast function and used it to predict metal
binding sites.   Nayal and Di Cera found that a high valence value is both necessary
and sufficient to predict calcium binding sites (Nayal & Di Cera, 1994), and they
proposed a valence function that can predict calcium binding sites with high spatial
accuracy.  Other groups have characterized the geometry of interaction of metal ions
with coordinating  residues in the proteins (Gregory  et al., 1993).
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Because of the exponential increase of the number of known three-dimensional
protein structures, we now have an opportunity to develop statistical approaches for
characterizing and recognizing calcium binding sites.  The rapidly growing structural
database enables us statistically to compare known calcium binding sites with
known nonsites, automatically extract features that are useful for distinguishing
them, and develop statistical methods for recognizing calcium binding sites in new
protein structures.  We have previously reported  the FEATURE system that
computes the spatial distribution of properties in protein structures (Bagley &
Altman 1995; Bagley et al. 1995).  A comprehensive set of physico-chemical
properties are used by FEATURE, ranging in detail from atomic-based properties to
those based on chemical group, amino acid type and secondary structure type.  Given
an interesting environment  within a protein structure, FEATURE divides the
environment  into spatial volumes such as concentric shells (the "shell" option) or a
3D grid of small cubes (the "oriented" option).  At each spatial volume, and for each
property, FEATURE sums up the property values within the volume to get an
overall numerical value, measuring the abundance of  the property within the
volume.  Given a set of sites known to have a specific functional or structural role,
as well as a background control set of nonsites, FEATURE can compute and
statistically compare their spatial distributions of properties, and determine the local
environments and properties that distinguish the sites of interest from the control
nonsites.  Each of these volume/property pairs is called a distinguishing feature.

FEATURE has been used to produce a statistical description of the differences
between calcium binding sites and random control nonsites (Bagley & Altman,
1995).  It found an abundance of ASP and GLU residues from 2 to 7 Å, a dearth of
LEU residues from 4 to 7 Å, an increase in oxygen, amide, and carbonyl groups at
2, 4 and 6 Å, generally low hydrophobicity, high solvent accessibility, high side
chain mobility, and a predominance of beta-turns and coils in the surrounding
regions.  For some protein binding sites, a composite description of the site
(recently  named "fuzzy recognition templates" (Moodie et al., 1996)), such as
produced by FEATURE, may be more useful than deterministic sequence/structure
motifs for recognizing sites in new structures.  

FEATURE finds for which properties at which corresponding volumes are the
known sites and nonsites significantly different.  In this sense, FEATURE is
essentially a statistical inference system.  A further task after characterizing the
difference between sites and nonsite, which is probably more important than the
inference problem, is to decide whether a new, previously unseen region is likely to
be a site.  This new task is essentially a supervised classification problem — that of
assigning a new individual into one of two possible classes on the basis of a set of
features and previously known examples in the classes.  In this paper, we present a
Bayesian approach to the classification problem.  We show that we can recognize



3

calcium binding sites with high sensitivity and specificity using our statistical
description of calcium binding sites and a log-odds scoring function.

Methods

We consider calcium binding sites to be 7 Å spherical regions centered upon
crystallographically determined calcium ions.  Nonsites are used as explicit
background controls, and are 7 Å spherical regions on surface and interior points
within proteins that do not bind calcium.  We decide whether a query region (the 7 Å
sphere around a probe point) is a calcium binding site by comparing the probe
region with known calcium binding sites and known nonsites.

The outline of the recognition method is shown in Figure 1.  The goal is to
compute a score that indicates the likelihood that the query region is a calcium
binding site.  We start by collecting a set of calcium binding sites and nonsites from
the Protein Data Bank (PDB, Bernstein, Koetzle et al. 1977).  The sites and nonsites
are divided into spatial volumes that are concentric shells of 1 Å thickness.  For
each site and nonsite, FEATURE computes the count of each property in each of the
spatial volumes.  It then compares the site counts to nonsite counts, using a
Wilcoxon rank-sum test, and reports the distinguishing features.  A complete list of
distinguishing features for calcium binding sites and the details of the
characterization method and its sensitivity analysis have been published elsewhere
(Bagley and Altman 1995).  The list of distinguishing features form a qualitative
model of calcium binding sites.  The numerical property counts of sites and nonsites
can be used to form a quantitative model.  When given a query region in a new
structure, we again divide it into concentric shells and apply FEATURE to compute
the abundance of the property in the corresponding spatial volumes.  The scoring
function then compares the values of properties for the query region with the
corresponding values of the known calcium sites and nonsites and decides if the
evidence supports the hypothesis that the query region is a site.

The scoring function

For each feature, we divide the observed total range of site and nonsite values into k
bins (k = 5 for these experiments).  The value of the property count, v, of the query
region must fall in one of the k bins (to account for outliers, values falling out of
the range are assigned to the nearest bin.)  If v falls in bin i , we can compute the
posterior probability that v is drawn from the distribution of the site values (as
opposed to the distribution of nonsite values) using Bayes' Rule:
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Figure 1:  Method outline.  Given a probe site in a new structure, and a set of
known calcium binding sites and nonsites, the method output a score that indicates
the likelihood that the probe site is a calcium binding site.
___________________________________________________________________
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P(site| bin i) =
P(bin i | site)P(site)

P(bin i | site)P(site) + P(bin i | nonsite)P(nonsite)
,

where P(site) and P(nonsite) are the prior probabilities of being a calcium binding
site or nonsite, as supplied by the user.  P(bin i|site) and P(bin i|nonsite) are the
proportions of all feature values that fall in bin i  for calcium binding sites and
nonsites, respectively.  They are computed from the property counts for sites and
nonsites.  To compute the overall likelihood that the probe region is a calcium
binding site, the system combines information from all distinguishing features.
The overall likelihood score is the sum of the logarithm of the odds  ratio:

                 log
P(site| bin i)

P(site)
∑

   {Distinguishing
       features}

A logarithm is used so that the ratios can add.  This score has the advantage of being
simple to interpret: a positive score indicates that there is more evidence that the
probe region is a site, whereas a negative score indicates that there is more evidence
that it is a nonsite.  For any feature we can enumerate all the bins that a new
observed value can possibly fall in, and thus can precompute all the log ratios for
each feature and for each bin into which a new observed value may fall.  The log-
ratios are recorded in a score lookup table.  When given a new structure, the system
computes the spatial distribution of the properties for the new structure, looks up
the score table for the individual log-ratios corresponding to the observed feature
values, and sums the individual scores to get an overall score.  To assist the user in
understanding a prediction, the recognition system can also generate an automated
prose report of the strongest individual pieces of evidence supporting or refuting the
prediction.

To evaluate the accuracy of our recognition algorithm, we used two measures:
sensitivity (ability to recognize a calcium binding site) and specificity (ability to
recognize a site that does not bind calcium). We used the statistical description
previously derived from 16 calcium binding sites and 100 random nonsites (Bagley
& Altman, 1995).  We chose as the independent test set 33 calcium binding sites
and 30 random nonsites not previously used in the analysis.  The PDB identification
number of the protein structures in the test set are (in parentheses are the numbers of
calcium binding sites and random nonsites used in each structure): 1ANX(4, 5),
1AYP(2, 5), 1CGV(2, 5), 1CLM(4, 5), 1OMD(3, 5), 3CLN(4, 5), 1SAC(2, 0),
2SCP(6, 0), 3ICB(2, 0), 3PAL(2, 0), and 5CPV(2, 0).  We calculated the
sensitivity and specificity of the recognition method on the test set.  We then pooled
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together the original sites and nonsites and the test set, and performed a leave-one-
out cross-validation analysis of accuracy.

We performed sensitivity analysis on parameters that may affect the
performance of the method.   We tested a range of values for each parameter, and
calculated the cross-validation sensitivity and specificity:

1.     Prior       probability       of       being       a       calcium       binding       site:    The system requires an
estimate of the prior probability of calcium binding sites in order to
employ Bayes' Rule.  The estimate may not always be accurate, and the
method must be robust to  a wide range of choices of prior probability.
We performed a sensitivity analysis on prior probability ranging from 10-6

to 0.8.
2.     Radius       of       the       sit      es/nonsite       regions   : How big  must the local region

around the center of interest be?  We tested radii ranging from 1Å to 7Å.
3.     Number        of        bins        in        the        scoring        function   : We performed sensitivity

analysis on the number of bins (value of k) ranging from 2 to 10.
4.     Redundant       properties   : Because the FEATURE system was designed to give

as comprehensive description of sites as possible, some of the properties
are  redundant.  We tested the possible confounding effect of including
redundant properties by removing two sets with obvious redundancy: one
of the two amino acid residue classifications, and one of the two secondary
structural classifications.

In order to comprehensively test the recognition method on thousands of query
regions in a realistic test situation, we scanned four calcium binding proteins that
were unrelated and not used in the training (each was left out of training when
building the model used for testing).  The PDB identifiers of the proteins and (in
parentheses) the number of calcium binding sites in them as documented in the PDB
files are: 1OMD(3), 3 CLN(4), 3ICB(2) and 3PAL(2).  For each test structure, we
defined a 2 Å search grid.  The recognition function was applied at each grid point to
compute the likelihood that a calcium ion can bind at that point.  Grid points that
scored positive were labeled as potential calcium binding points. The high scoring
probe points were visualized graphically, and their locations were compared with
those of the actual calcium binding sites.

Results

The sensitivity and specificity of calcium binding site recognition in both the
independent test set and in the cross-validation analysis are shown in Table 1.
Figure 2 shows the histograms of the recognition scores for the calcium binding
sites and nonsites in the two analyses.  Table 2 shows the results of sensitivity
analysis.  The structures and the potential calcium binding points found by our
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scanning method are shown in Figure 3.  Four kinemage files with the results of
calcium site scanning are available at:

 http://www-smi.stanford.edu/projects/helix/pubs/wei-psb98/.

Sensitivity (%) Specificity (%)
Independent test 91 100
Cross-validation 98 100

Table 1: Accuracy of recognition in independent test and cross-validation analysis.
_________________________________________________________________

Parameters Sensitivity (%) Specificity (%)
Prior of sites 10-6 98 100

10-4 98 100

0 . 0 1 9 8 1 0 0
0.1 96 99
0.5 94 99
0.8 94 99

Radius (Å) 1 100 88
3 98 99
5 98 100
7 9 8 1 0 0

Number of bins 2 96 100
5 9 8 1 0 0
7 98 100
10 98 100

Remove Redundancy 98 100

Table 2:  Sensitivity analysis on parameters.  The sensitivity and specificity are for
cross-validation results.  The parameters in bold are the ones actually used in the
paper.
__________________________________________________________________
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Figure 2:  Histogram of recognition scores for the calcium binding sites and random
nonsites  (a) in the independent test set; (b) in the cross-validation analysis.
___________________________________________________________________
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 Figure 3  Scanning results.  For each protein, the picture on the left show as dots
all search points that scored positive, and the picture on the right show as dots the
20 search points that have the top 20 highest scores.  The real locations of the
calcium ions are marked with "X".

________________________________________________________
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Discussion

The accuracy of our recognition method is high, with sensitivity and specificity
above 90%.  Furthermore, our sensitivity analysis indicates that for a wide range of
prior probabilities, neighborhood radii,  and bin granularity the method is robust and
accurate.

The performance of the method in scanning test proteins is promising.  Each
protein scan required evaluation of more than 3000 probe positions, and lead to a
small number of positive scores.  For all four proteins,  the method recognized the
calcium binding sites as the centers of the highest scoring regions.  In only one case
was a calcium binding site completely missed.  The missed calcium binding site is
CA135 as documented in 1OMD.  This calcium is at the interface of four molecules
in the crystal packing lattice, and its binding site is created by contributions from
more than one of these molecules.  Since structural data on only one molecule
within the asymmetric unit is available to our method, the binding site was missed.
If structures of all four molecules were available, there would be high chance that
our method be able to find this particular calcium binding site.

The highest scores in each cluster of positively scored probe points are near the
actual calcium sites, and are always within 5 Å distance from the precise locations.
The very highest scoring points are about 1 Å away from the precise locations.  In
general, the search points with low positive scores are far away from any of the real
binding sites.  Because we are using the documentation in PDB files as the gold
standard, those points should be considered false positives.  Interestingly,  most of
these false positives are located within 2Å from multiple glutamate and aspartate
side chains—amino acids known to interact with metal ions.  For example, the two
small positive scoring clusters in  that appear  on the left side of Figure 3 look very
much like they could bind a calcium ion.  These false positives may actually
represent binding sites for other metal ions (or even missed calcium ions) that are
not documented in PDB.

Using the statistical model of calcium binding sites (instead of a deterministic
one) gives our method the potential to recognize new calcium binding sites which
may have different amino acid composition or 3D atomic arrangement from all
known calcium binding sites, but which maintain most of the important
biochemical and biophysical features.  

Our scoring function assumes that all the property/volume combinations are
independent and that their contributions can be summed.  This independence
assumption is clearly false: if the abundance of ASP and GLU is high, then the
abundance of oxygen and carbonyl groups are likely to be high as well.  Our
sensitivity analysis shows a slight increase in performance when we remove one of
our redundant secondary structure classifications (the most obviously correlated
features in our system).   As the quantity of structural data increases, we may be
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able to consider correlation effects between properties in a statistically rigorous
manner.

Our results demonstrate that there are conserved features in the spatial
distributions of properties across a wide range of proteins that share a common
structural feature.  In the case of calcium binding, the descriptions gathered from a
relatively small set of sixteen calcium sites can be used to successfully recognize
sites in unrelated proteins.  Our recognition method is competitive with functions
that use information about calcium valence and the associated geometry of
surrounding atoms.  Our approach is general, however, and we are endeavoring to
create statistical models for other important protein sites.   We are also working to
improve the efficiency of our scanning code, to allow for large scale, automated
structure annotation.
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