RECOGNIZING PROTEIN BINDING SITES USING
STATISTICAL DESCRIPTIONS OF THEIR 3D
ENVIRONMENTS

Liping Wei & Russ B. Altman
Section on Medical Informatics
SUMC, MSOB X-215, Stanford, CA 94305-5479
{wei, altman}@smi.stanford.edu

We have developed a new method for recognizgigs in three-dimensional protein
structures. Our method is based on our previously repoatgdrithm for creating
descriptions of protein microenvironments using physical and chemical propertiagtiate
levels of detail (includindeatures at the atomic, chemical group, residue, sexbndary
structural levels). The recognition method takes three inputs: a set of sitebaratsome
structural or functional role, a set of control nonsites that thiskrole, and a singlguery
site. The distribution of properties for the query site is compared tdishéutionsfor both
sites and nonsites to determine the gredjn which it is mostsimilar. A log-oddsscoring
function, based on Bayes’ Rule, computes a score that indicates the likelihood thaeihe
region is a site of interest. lthis paper, we apply the method to the taskidéntifying
calcium binding sites in proteins. Cross-validation analysis shows tthiatrecognition
approach has high sensitivity and specificity. We also describe the results of sdamnming
calcium binding proteins (with the calcium removed) using a three-dimensional gpichlné
points at 2 A spacing. The probgointsthat havehigh scores cluster around theue
calcium binding sites, with the highest scoring points at or near the binding sites. The method
fails in only one case where a calcium binding siteresated by fourproteins in thecrystal
lattice, andthus notrecognizablewithin the crystallographic asymmetrignit. Our results
show that property-based descriptions can be used for recognizing psitesn in
unannotated structures.

Introduction

Although they share the same important function of binding calauwns, calcium
binding sites—local regions within proteins thimd calcium ions—differgreatly
in their three-dimensional structure. Defining these-dimensional (3D) structural
"motif* of calcium binding is important founderstandinghe functions of new
proteins that possess this motif, and for engineering novel binding capahilibes
proteins. Investigations into the geomedndchemistry of calcium binding sites
have produced refinednodels of thesesites, and some predictive capabilities.
Yamashita and colleagues found that metal binding &itegiding calcium binding
sites) are centered in a shell of hydrophilic ligarsdstounded by ahell of carbon-
containing hydrophobicatom groups (Yamashita etl., 1990). Based onthis
finding, they defined a hydrophobicity contrast functamd used it tgredictmetal
binding sites. Nayal and Di Cera found that a high valence value isnbo#issary
andsufficient to predictcalcium binding site§Nayal & Di Cera, 1994),and they
proposed a valence function that can predict calcium birglbeg with high spatial
accuracy. Other groups have characterized the geometry of interactivetalfions
with coordinating residues in the proteins (Gregory et al., 1993).



Because of the exponential increaseghs number of knowthree-dimensional
protein structures, we now have an opportunitgégelopstatisticalapproaches for
characterizing and recognizing calcium binding sites. The rapidly growing structural
databaseenables usstatistically to compareknown calcium binding sites with
known nonsites, automaticallgxtract featureshat are useful for distinguishing
them, and develop statistical methods for recognizing calcium birsiieg in new
protein structures. We have previoushported the FEATURE system that
computes the spatial distribution of properties in protein struct{Bagley &
Altman 1995;Bagley etal. 1995). A comprehensiveset of physico-chemical
properties areised by EATURE, ranging indetail from atomic-based properties to
those based on chemical group, amino acid type and secondary structure type. Given
an interesting environment within a protein structurEATURE divides the
environment into spatial volumes such as concentric shells (the "shell" option) or a
3D grid of small cubes (the "oriented" option). At each spatial volume, aredbr
property, EATURE sums up theproperty valueswithin the volume to get an
overall numerical value, measuring tlaundance of the propertywithin the
volume. Given a set of sites known to have a specific functional or structural role,
as well as abackgroundcontrol set of nonsites, BATURE can compute and
statistically compare their spatial distributions of properties,daterminethe local
environmentsand properties that distinguish the sites of interest from the control
nonsites. Each of these volume/property pairs is called a distinguishing feature.

FEATURE has beerused to produce atatistical description of thedifferences
between calciunbinding sitesand randomcontrol nonsites(Bagley & Altman,
1995). It found an abundance of ASP and GLU residues from 2 to 7déarth of
LEU residues from 4 to 7 A, aincrease inoxygen, amideandcarbonyl groups at
2, 4 and 6 A generallylow hydrophobicity, high solvent accessibility, higite
chain mobility, and apredominance ofbeta-turnsand coils in the surrounding
regions. For some protein binding sites, a compadéscription of thesite
(recently named “fuzzyrecognition templates{Moodie et al., 1996)), such as
produced by EATURE, may be more useful than determinissiquence/structure
motifs for recognizing sites in new structures.

FEATURE finds for which properties at whicworrespondingzolumesare the
known sitesand nonsites significantlydifferent.  In this sense, FEATURE is
essentially a statisticahferencesystem. Afurther task after characterizing the
differencebetweensites and nonsite, which is probably more important than the
inference problem, is to decide whether a new, previously unseen region is likely to
be a site. This new task is essentially a supervised classification problem — that of
assigning a new individual into one of two possible classes on the basis of a set of
features and previously known examples in the classes. In this papereseat a
Bayesian approach tihe classification problem. We show that wan recognize



calcium binding sites with high sensitivitgnd specificity using our statistical
description of calcium binding sites and a log-odds scoring function.

Methods

We considercalcium binding sites to be 7 Apherical regionscenteredupon
crystallographically determined calcium ions.  Nonsitesare used asexplicit
backgroundcontrols,and are 7 Aspherical regions omsurfaceand interior points
within proteins that do not bind calcium. We decide whether a query region (the 7 A
spherearound aprobe point) is a calcium binding site by comparing pihebe
region with known calcium binding sites and known nonsites.

The outline of the recognitiomethod isshown in Figure 1. The goal is to
compute ascorethat indicatesthe likelihood that thequery region is acalcium
binding site. We start by collecting a set of calcium binding sites and nonsites from
the Protein Data Bank (PDB, Bernstein, Koetzle et al. 1977). The sites and nonsites
aredividedinto spatial volumes thadre concentricshells of 1 A thickness. For
each site and nonsiteEATURE computes the count @achproperty ineach of the
spatial volumes. It thewomparesthe site counts to nonsite counts, using a
Wilcoxon rank-sum test, and reports the distinguishing features. A contipteté
distinguishing features for calcium binding sitesand the details of the
characterization methaahdits sensitivity analysif©iave been publisheelsewhere
(Bagleyand Altman 1995). The list of distinguishinfgaturesform a qualitative
model of calcium binding sites. The numerical property counts of sites and nonsites
can be used tform a quantitative model. Whegiven aquery region in a new
structure, we again divide ihto concentricshellsandapply FEATURE to compute
the abundance ofhe property in theorrespondingpatial volumes. The&coring
function thencomparesthe values of properties for thguery region with the
correspondingralues of the known calcium sitemd nonsitesand decides if the
evidence supports the hypothesis that the query region is a site.

The scoring function

For each feature, we divide the observed total range of site and nonsiteivaues
bins k = 5 for these experiments). The value of the property count, v, afutrg
region must fall in one of thk bins (toaccount foroutliers, values falling out of
the range are assigned ttte nearestin.) If v falls in bini, we cancompute the
posterior probability that is drawnfrom the distribution of the site values (as
opposed to the distribution of nonsite values) using Bayes' Rule:
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Figure 1: Methodoutline. Given aprobe site in a new structurand aset of
known calcium binding sites and nonsites, the methagut ascorethat indicates
the likelihood that the probe site is a calcium binding site.




P(bini| site) P(site)

P(site| bini) = ,
P(bini|site) P(site) + P(bini| nonsite) P(nonsite)

where Pg$ite) and Plionsit§ arethe prior probabilities of being a calciunmnding
site or nonsite, asupplied by the user. Bif ilsite) and Pbin ijnonsit§ are the
proportions of allfeaturevalues that fall in bini for calcium binding sites and
nonsites, respectively. Theyecomputedfrom the property counts for sites and
nonsites. To compute the overall likelihood that prebe region is aalcium
binding site, the system combines information from all distinguisHeajures.
The overall likelihood score is the sum of the logarithm of the odds ratio:
o P(site| bini)
P(site)
{ Distinguishing
features

A logarithm is used so that the ratios can add. This score has the advantage of being
simple to interpret: a positivecore indicateshat there is moreevidencethat the

probe region is a site, whereas a negative score indicatetheéhatis moreevidence

that it is a nonsite. For arfgature we can enumeraddl the bins that a new
observed value capossibly fall in, andthus can precomputell the log ratios for

each feature anfibr eachbin into which anew observedvalue may fall. The log-

ratios are recorded in a score lookup table. When given a new structure, the system
computes the spatial distribution of the properties for the new strutiokes, up

the scoretable for theindividual log-ratios corresponding tahe observed feature
values, and sums the individual scores to get an overall score. To assist the user in
understanding @rediction, the recognition systecanalso generate an automated
prose report of the strongest individual pieces of evidence supporting or refuting the
prediction.

To evaluate theccuracy ofour recognition algorithm, wasedtwo measures:
sensitivity (ability torecognize acalcium binding site)and specificity (ability to
recognize asite thatdoesnot bind calcium). Weusedthe statisticaldescription
previously derived from 16 calcium bindisites and 100 randomnonsites(Bagley
& Altman, 1995). Wechose as thindependentest set 33 calcium binding sites
and 30 random nonsites not previously used in the analysis. ThedeBtBication
number of the protein structures in the test set are (in parentheses are the numbers of
calcium binding sitesand randomnonsitesused in eactstructure): 1ANX(4, 5),
1AYP(2, 5), 1ICGV(2, 5), 1CLM(4, 5), 10MD(3, 5), 3CLN(4, 5), 1SAC(2, 0),
2SCP(6, 0),3ICB(2, 0), 3PAL(2, 0),and 5CPV(2, 0). Wecalculated the
sensitivity and specificity of the recognition method on the test set. We then pooled
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together the original siteandnonsitesandthe test setand performed a leave-one-
out cross-validation analysis of accuracy.

We performed sensitivity analysis onparametersthat may affect the
performance ofhe method. Wéested a range ofalues foreach parameter, and
calculated the cross-validation sensitivity and specificity:

1. Prior probability of beinga calcium binding site: The systentequires an
estimate of the prior probability of calcium binding sites drder to
employ Bayes' Rule. The estimate may albtays be accuratend the
methodmust be robust to wide range ofthoices of priomprobability.

We performed a sensitivity analysis on prior probability ranging frofh 10
to 0.8.

2. Radiusof the sites/nonsiteregions How big must the locategion
around the center of interest be? We tested radii ranging from 1A to 7A.

3. Number of bins in_the scoring function We performedsensitivity
analysis on the number of bins (valuekpfanging from 2 to 10.

4. Redundanproperties Because theEFATURE system waslesigned togive
as comprehensive description of sitegpassible, some of thproperties
are redundant. We testélde possibleconfoundingeffect of including
redundant properties by removihgo sets with obviousedundancy: one
of the two amino acid residue classifications, and one of the two secondary
structural classifications.

In order to comprehensively test the recognition method on thousanderpf
regions in a realistic test situation, weannedour calcium binding proteins that
were unrelatedand not used inthe training(eachwas left out of trainingwhen
building themodelusedfor testing). The PDBdentifiers ofthe proteinsand (in
parentheses) the number of calcium binding sites in them as documented in the PDB
files are: 10MD(3), 3 CLN(4)3ICB(2) and3PAL(2). Foreachtest structure, we
defined a 2 A search grid. The recognition function was applied at each grid point to
compute the likelihood that a calcium ican bind athat point. Grid points that
scored positivavere labeled apotential calcium bindingoints. The highscoring
probepoints werevisualized graphicallyand their locationswere comparedvith
those of the actual calcium binding sites.

Results

The sensitivityand specificity of calcium binding site recognition in both the
independentest setand in the cross-validationanalysis are shown in Table 1.
Figure 2 shows the histograms of the recogniscores for the calciurbinding
sitesandnonsites in the two analyses. Table 2 shows the resukenditivity
analysis. The structureand the potential calcium binding poinfeund by our



scanning methodreshown in Figure 3. Four kinemage files with the results of
calcium site scanning are available at:
http://www-smi.stanford.edu/projects/helix/pubs/wei-psb98/.

Sensitivity (%) Specificity (%)
Independent test 91 100
Cross-validation 98 100

Table 1: Accuracy of recognition in independent test and cross-validation analysis.

Parameters Sensitivity (%) Specificity (%)
Prior of sites 106 98 100
104 98 100
0.01 98 100
0.1 96 99
0.5 94 99
0.8 94 99
Radius (A) 1 100 88
3 98 99
5 98 100
7 98 100
Number of bins 2 96 100
5 98 100
7 98 100
10 98 100
Remove Redundancy 98 100

Table 2: Sensitivity analysis on parameters. The sensitwvitispecificity are for
cross-validatiorresults. Theparameters in boldrethe ones actuallyised in the
paper.
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Figure 2: Histogram of recognition scores for the calcium binding aitdgandom
nonsites (a) in the independent test set; (b) in the cross-validation analysis.




Figure 3 (to be continued)
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Figure 3 Scanning results. For each protein, the picture on the left shinisas
all search points that scored positiaadthe picture on the right show as dots the
20 searctpoints thathavethe top 20 highest scores. Theal locations of the
calcium ions are marked with "X".
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Discussion

The accuracy ofour recognition method ifigh, with sensitivityand specificity
above 90%. Furthermore, our sensitivity analysis indicates that\iddearange of

prior probabilities, neighborhood radii, and bin granularity the method is robust and
accurate.

The performance othe method in scanningst proteins is promising.Each
protein scarrequiredevaluation of more than 3000 propesitions,and lead to a
small number of positive scores. For all four proteins, nte¢hodrecognized the
calcium binding sites as the centers of the highest scoring regions. In ordgsene
was a calcium binding site completely missed. The missed calcium binding site is
CA135 as documented in 10MD. This calcium is at the interface of four molecules
in the crystal packing latticeandits binding site iscreated bycontributionsfrom
more than one of these molecules. Since structia@ ononly one molecule
within the asymmetric unit is available to our method, the binding site was missed.
If structures of all four moleculesereavailable, there would bleigh chancethat
our method be able to find this particular calcium binding site.

The highest scores in each cluster of positively scored probe pointear the
actual calcium sites, and are always within Slidtancefrom the preciselocations.

The very highest scoring points are about hvlayfrom the preciselocations. In
general, the search points with low positive scores are far away from any refthe
binding sites. Because we aresing thedocumentation in PDB files as thgold
standard, those points should dmnsideredalse positives. Interestingly, most of
these falsgositivesare locatedvithin 2A from multiple glutamateand aspartate

side chains—amino acids known to interact with metal ions. For example, the two
small positive scoring clusters in that appear on the left side of Figure ¥dopk
much like theycould bind acalciumion. These falsepositives mayactually
represenbinding sites for other metabns (or even missed calciumons) that are

not documented in PDB.

Using the statisticainodel of calcium bindingites (instead of a deterministic
one) gives our method thmotential torecognize nevealcium binding sitesvhich
may have different amino acid composition or 3D atomi@rrangementrom all
known calcium binding sites, but which maintain most of the important
biochemical and biophysical features.

Our scoring function assumes that all the property/volume combinations are
independent andhat their contributionscan be summed. Thisindependence
assumption iglearly false: ifthe abundance oASP and GLU is high, then the
abundance obxygen and carbonyl groupsare likely to be high as well. Our
sensitivity analysis shows a slight increas@énformancevhen we remove one of
our redundant secondargtructure classifications (theost obviously correlated
features inour system). As the quantity of structudaktaincreases, we may be
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able to consider correlation effects betweproperties in a statistically rigorous
manner.

Our results demonstratethat there are conserved features ithe spatial
distributions of properties acrossvade range ofproteins thatshare acommon
structural feature. In thease ofcalcium binding, the descriptiommtheredrom a
relatively small set of sixteen calcium sitegn be used tsuccessfullyrecognize
sites inunrelatedproteins. Our recognitiomethod is competitivevith functions
that use information about calciumalence and the associatedgeometry of
surroundingatoms. Oumapproach is general, howevand we areendeavoring to
create statistical models for other important protein sites. aMvalso working to
improve theefficiency of our scanningcode, toallow for large scaleautomated
structure annotation.
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