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Many natural processes consist of networks of interacting elements which a�ect
each other's state over time, the dynamics depending on the pattern of connec-
tions and the updating rules for each element. Genomic regulatory networks are
arguably networks of this sort. An attempt to understand genomic networks would
bene�t from the context of a general theory of discrete dynamical networks which
is currently emerging. A key notion here is global dynamics, whereby state-space is
organized into basins of attraction, objects that have only recently become accessi-
ble by computer simulation of idealized models12;13, in particular \random Boolean
networks". Cell types have been explained as attractors in genomic networks5,
where the network architecture is biased to achieve a balance between stability
and adaptability in response to perturbation3. Based on computer simulations
using the software Discrete Dynamics Lab (DDLab)15 , these ideas are described,
as well as order-chaos measures on typical trajectories that further characterize
network dynamics.

1 Introduction

Processes consisting of concurrent networks of interacting elements which af-
fect each other's state over time occur in a wide variety of natural systems,
the dynamics depending both on the pattern of connections (wiring) and on
the update rules for each element. The behavior of such complex feedback
webs is di�cult to treat analytically by classical mathematics using its tools of
partial di�erential equations and continuous dynamics. Instead, a theoretical
understanding of these networks depends on numerical simulations of idealized
computer models known as discrete dynamical networks.

An example are cellular automata, a powerful yet simple class of network,
characterized by a universal rule and uniform nearest neighbor wiring, which
are used to study processes in physical systems such as reaction-di�usion11,
and self-organization by the emergence of coherent interacting structures14.
By contrast, biological systems such as neural, immune or genomic networks
require models where wiring and rules are unconstrained. These more general
\random Boolean networks" (RBN) were proposed as models of genomic regu-
latory networks by Kau�man5;6 and have roots in Ashby's work on dynamical
systems and cybernetics1.
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Figure 1: A basin of attraction (one of 15) of a random Boolean network (n=13, k=3) de�ned
in �gure 4. The basin links 604 states, of which 523 are garden-of-Eden states. The attractor
has period 7, and one of the attractor states is shown as a bit pattern. The direction of time
is inwards from garden-of-Eden states to the attractor, then clock-wise.

A key notion underlying the behavior of discrete dynamical networks is
that they organize their state-space into a set of basins of attraction, object
which sum up the network's global dynamics. The terminology is borrowed
from classical continuous dynamical systems. Basins of attraction can be in-
vestigated by running networks forward from many initial states to discover
the range of attractors present. More recently, exact representations of basins
of attraction have become accessible, where new algorithms allow the network
to be run \backwards" to disclose all possible historical paths12;13;16.

2 Genomic regulatory networks

The cells of living organisms di�erentiate within the developing embryo into
the various cell types that form tissues by a process that is regulated at the
molecular level by DNA sequences, encoding genes that produce proteins that
regulate other genes. All eukaryotic cells in an organism carry an identical set
of genes, some of which are expressed others not. A cell type is de�ned by the
particular subset of genes that are expressed. The gene expression pattern of
a cell needs to be stable but also adaptable. What then is the mechanism that
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maintains the several hundred alternative stable patterns of gene expression of
the various cell types making an organism?

Genes regulate each other's activity by coding for transcription factors,
which may enhance or repress the expression of other genes by binding (pos-
sibly in combination) at particular sites. Though a particular gene directly
regulates just a small set of other genes, those genes regulate other genes in
turn, so a gene will indirectly in
uence the activity of many genes downstream.
Conversely, a particular gene is indirectly in
uenced by many genes upstream.
A gene may directly or indirectly contribute to regulating itself. The result is
a genomic regulatory network, a complex feedback web of genes turning each
other on and o�. This may be interpreted as an idealized dynamical system of
model genes with directional links or \wires" (transcription factors), updating
their (on-o�) state in parallel, according to the combinatorial logic of their
inputs8, Kau�man's random Boolean networks5;6.

There is justi�ed debate as to whether parallel (synchronous) updating,
and the on-o� characterization of genes, are valid idealizations when applied
to real genomic networks, given that transcription is asynchronous and driven
at di�erent rates. However, gene activity at the molecular scale consists of
discrete events occurring concurrently. Variable protein concentrations can be
accounted for by genes being on for some fraction of a given time span. The
RBN idealization is arguably a valid starting point for gaining insights into
gene network dynamics.

When genomic regulatory networks are seen from a discrete dynamical
network perspective, the problem of understanding how the range of stable cell
types can exist with identical genes becomes more understandable. Cell types
can be de�ned as the separate attractors or basins of attraction into which
network dynamics settles from various initial states. Trajectories leading to
attractors can be seen as the pathways of di�erentiation.

In a cell type's gene expression pattern over a span of time (i.e. its space-
time pattern), a particular gene may, broadly speaking, be either on, o�, or
changing. If a large proportion of the genes are changing, chaotic dynam-
ics, the cell will be unstable. On the other hand, dynamics that settles to
a pattern where a large proportion of the genes are permanently on or o�
(frozen) may be too in
exible for adaptive behavior. Cells constantly need to
adapt their gene expression pattern in response to a variety of hormone and
growth/di�erentiation factors from nearby cells. The de�nition of a cell type
may be more correctly expressed as a set of closely related gene expression
patterns, allowing an essential measure of 
exibility in behavior. Too much

exibility might allow a perturbation to 
ip the dynamics into a di�erent basin
of attraction, a di�erent cell type such as a cancer cell, or a bone cell to a fat
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Figure 2: RBN architecture. Each element in the network synchronously updates its value
according to the values in a pseudo-neighborhood, set by single wire couplings to arbitrarily
located network elements at the previous time-step. Each network element may have a
di�erent wiring, rule and number of input wires k. The system is iterated.

cell. The conjecture is that the appropriate dynamical regime has evolved to
�nd a delicate balance between stable on/o� regions and dynamically changing
regions. This can be visualized as a balance between order and chaos with its
particular notion of a phase transition.

3 Random Boolean Network Architecture

Each element (or model gene) in a RBN may have a di�erent wiring and/or
rule scheme (but not necessarily), and also a di�erent number, k, of input
\wires" from other network elements. Most work on RBN has assumed net-
works with uniform k, but recent investigations of genomic regulatory networks
require setting up networks with particular proportions of di�erent k inputs
to match data from cell biology3. Mixed k networks are also required to check
solutions to the inverse problem, where the network architecture is deduced
from some degree of knowledge of the basin of attraction �eld9.

Figure 3: RBN 1d space-time pattern, n=150, k=5. Time proceeds
from the top down. Wiring and rules were initially set at random
resulting in chaotic dynamics. Middway in the space-time pattern
the rules were adjusted to set canalizing inputs at 52% resulting in
the rapid emergence of frozen elements, a sign of order.

RBN imply a value range of 2, where each element has a value of either 0
or 1 (an inactive or active gene), but the attractor basin approach would apply
equally to networks with more than two values. The state of a network of
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%
the basin in �gure 1

the network

el. wiring rule

12 10,1,7 86

11 6,2,9 4

10 10,10,12 196

9 2,10,4 52

8 5,6,8 234

7 12,5,12 100

6 1,9,0 6

5 5,7,5 100

4 4,11,7 6

3 8,12,12 94

2 11,6,12 74

1 6,5,9 214

0 12,9,6 188

Figure 4: The basin of attraction �eld of a random Boolean network (n=13, k=3). The
213 = 8192 states in state space are organized into 15 basins, with attractor periods ranging
between 1 and 7. The number of states in each basin is: 68, 984, 784, 1300, 264, 76, 316,
120, 64, 120, 256, 2724, 604, 84, 428. Figure 1 shows the arrowed basin in more detail.
Right: the network's wiring/rule scheme.

n elements is the pattern resulting from the values assigned to each element,
from a �nite range of values v (usually v=2). Each element synchronously
updates its value in discrete time steps. The value of each element Ci at time
t + 1 depends on its particular Boolean function fi, applied to a notional or
pseudo-neighborhood, size k, whose values depend on the wiring, as illustrated
in �gure 2. The resulting sequence of states, the network's trajectory, can be
shown as a space-time pattern in one (or two) dimensions as in �gure 3.

A pseudo-neighborhood of size k has 2k permutations of values. The most
general expression of the Boolean function or rule is a lookup table (the rule

table) with 2k entries, giving 22
k

possible rules. Sub-categories of rules can also
be expressed as simple algorithms, concise AND/OR/NOT logical statements,
totalistic rules11 or threshold functions. The number of e�ectively di�erent
rules is reduced by symmetries in the rule table12. By convention the rule
table is arranged in descending order of the values of neighborhoods, and the
resulting bit string converts to the decimal or hexadecimal rule number.

An example of a k=3 rule table for rule 30 (hex 1e),

7 6 5 4 3 2 1 0 - neighborhoods, decimal
111 110 101 100 011 010 001 000 - neighborhoods, binary
0 0 0 1 1 1 1 0 - outputs, the rule table
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The system's parameters are set by specifying the wiring and rule for
each of the n network elements. Once set, the networks wiring/rule scheme is
usually �xed over time.

The i-th cell Ci has wiring connections wi;k�1; wi;k�2; : : : ; wi;0. Con-
nections are assigned to any of the n elements in the network, including
Ci itself. Duplicate connections are allowed, giving nk possible alternative

wiring options. The rule for element i is fi, assigned from the 22
k

alter-
natives in rule-space. The time evolution of the i-th element is given by,
Ct+1
i

= fi(C
t

wi;k�1
; Ct

wi;k�2
; : : : ; Ct

wi;0
). The number of all possible alternative

wiring/rule schemes that can be assigned to a given RBN of size n and ho-

mogeneous connectivity k is given by13, Sn;k = (nk)n � (22
k

)n. This may be
compared with the number of possible basin of attraction �elds16, Fn, for a
network of size n, which equals the number of alternative mappings, Q ! Q,

for a set Q of size n, so Fn = (2n)
(2n)

.

As Sn;k > Fn for a fully wired network where k = n, which can achieve
any mapping, there must be considerable redundancy in wiring/rule schemes
so that many equivalent schemes generate identical basin of attraction �elds.
This is indeed the case. For example, if the pseudo-neighborhood of a network
element is re-ordered, there is an appropriately re-ordered rule table that gives
identical behavior, thus k! equivalent wiring-rule schemes. Myers7 has derived
expressions for the number of e�ectively distinct maps, thus basin of attraction
�elds for RBN.

The software DDLab15 allows a network size n (arranged in one or two
dimensions) to be set up with any arrangement of wiring, rules, and k values.
Wiring and rule parameters can be restricted or biased in various ways. For
example wiring can be con�ned within a local neighborhood, and the rules can
be tuned to a given fraction of canalising inputs3;16 (see section 10).

4 Basins of Attraction

The idea of attractor basins in discrete dynamical networks is summarized in
�gure 5. Given an invariant network architecture and the absence of noise, a
discrete dynamical network is deterministic, and follows a unique trajectory
(a sequence of network states) from any initial state. This non-random walk
through a �nite state-space must reach an attractor. When a state that has
occurred previously is encountered, the dynamics become trapped in a perpet-
ual cycle of repetitions which de�nes the attractor (state cycle) and its period
(minimum one, a stable point), whereas transients are sequences outside the
attractor but leading to it.
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These systems are dissipative. A state may have multiple predecessors (in-
cluding none) but just one successor resulting in a convergent tree-like topology
of the 
ow in state-space. The set of transient trees rooted on each attractor
state de�nes a basin of attraction with a topology of trees rooted on cycles
(�gure 1). Network architecture thus organizes state-space into a set, or �eld,
of basins of attraction, representing the systems global dynamics (�gure 4).

5 Computing Pre-images

The capability of constructing attractor basins depends on reverse algorithms
for directly computing the predecessors (also known as pre-images) of network
states12;13;16. This allows the network's dynamics, in e�ect, to be run back-
wards in time. Backward trajectories will, as a rule, diverge. These algorithms
open up a window on the precise structure of the basins of attraction of discrete
dynamical networks.

Di�erent reverse algorithms apply to networks with di�erent qualities of
connectivity. The most computationally e�cient algorithm applies to 1d net-
works with cellular automata type connections, although the rules for each
element may di�er. An alternative algorithm is required for RBN with their
non-local connections and possibly mixed k. This algorithm also applies to
cellular automata, which are just a sub-class of RBN.

These methods are in general orders of magnitude faster than the brute
force method, constructing an exhaustive map resulting from network dynam-
ics. The exhaustive method rapidly becomes computationally intractable with
increasing network size so is limited to very small systems, but applies to
all network types and also allows the attractor basins of random maps to be
constructed16. The three independent methods together form a valuable real-
ity check on the correctness of the computed pre-images and attractor basins.
These methods are applied in DDLab to compute and portray attractor basins.
Previous investigations of attractor basins relied only on statistical methods.
These are also implemented in DDLab and are appropriate for large networks
(see section 10).

6 Constructing Attractor Basins

To construct a basin of attraction containing a particular state or \seed", the
network is iterated forward from the seed state until a repeat is encountered
in the trajectory. This identi�es the attractor cycle as the sequence of states
from the state that was repeated.
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For a network size n an example of one of its states, B, might be
1010 : : : 0110. State-space is made up of all 2n states, the space of all
possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and
A is a predecessor (pre-image) of B, according to the dynamics of the
network.

The state B may have other pre-images besides A, and the pre-images
states may have their own pre-images or none. States without pre-
images are known as garden-of-Eden states.

Any trajectory must sooner or later encounter a state that occured
previously - it has entered an attractor cycle. The trajectory leading
to the attractor is known as a transient. The period of the attractor
is the number of states in its cycle, which may be only one - this is
known as a point attractor.

Take a state on the attractor, �nd its pre-images (excluding the pre-
image on the attractor). Now �nd the pre-images of each pre-image,
and so on, until all garden-of-Eden states are reached. The graph of
linked states is a transient tree rooted on the attractor state. Part of
the transient tree is a subtree de�ned by its root.

Construct each transient tree (if any) from each attractor state. The
complete graph is the basin of attraction. Some basins of attraction
have no transient trees at all, just the bare \attractor".

Now �nd every attractor cycle in state-space and construct its basin
of attraction. This is the basin of attraction �eld containing all 2n

states in state-space, but now linked according to the dynamics of the
network. Each discrete dynamical network imposes a particular basin
of attraction �eld on state-space.

Figure 5: State space and attractor basins.

Once the attractor cycle is known (and drawn as a circle of nodes), the
transient tree (if it exists) rooted on each attractor state is constructed in
turn. Using one of the reverse algorithms, the pre-images of the attractor
state are computed, but the pre-image lying on the attractor itself is deliber-
ately excluded to prevent endlessly tracing pre-images backwards around the
attractor cycle. The reverse algorithm is then re-applied repeatedly, to the
pre-images of pre-images, until all the \leaves" of the transient tree have been
reached. These are states without pre-images, known in automaton terminol-
ogy as \garden-of-Eden" states. In this way the transient tree is completely
speci�ed.

In a similar way, just a subtree or a fragment of a subtree may be con-
structed rooted on a state. However, because a state chosen at random is very
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likely to be a garden-of-Eden state, to construct a subtree it is usually neces-
sary to run the network forward by at least one step from the initial random
state and use the state reached as the subtree root. Running forward by more
steps will reach a state deeper in the subtree so allow a larger subtree to be
constructed.

7 Portraying Attractor Basins

Attractor basins are portrayed as directed graphs as presented in12. Global
states are represented by nodes, by a bit pattern in 1d or 2d, or as the decimal
or hex value of the state. The nodes are linked by directed arcs. Each node
will have zero or more incoming arcs from its pre-image nodes (in-degree), but
because the system is deterministic, exactly one outgoing arc (one out-degree).

In the graphic convention for drawing attractor basins12, the length of tran-
sition arcs decreases with distance away from the attractor, and the diameter
of the attractor cycle approaches an upper limit with increasing period. The
forward direction of transitions is inward from garden-of-Eden states to the at-
tractor, which is the only closed loop in the basin, and then clockwise around
the attractor cycle (�gure 1 shows an example). Typically, the vast majority
of states in a basin of attraction lie on transient trees outside the attractor,
and the vast majority of these states are garden-of-Eden states.

A given network de�nes its basin of attraction �eld, from which charac-
teristic measures may be taken, such as the number of attractors, attractor
periods, size of basins, characteristic length of transients and characteristic
branching within trees (the density of leaves, in-degree frequency). These are
also measures of convergence indicating the degree of order-chaos in the dy-
namics, where high leaf density, high branching, short transients, and small
attractor cycles indicate order, and the converse indicates chaos.

8 Perturbations

The precise structure of attractor basins is of interest as it re
ects the stability
of cell types to perturbation, both to the current state of the network and to
the network parameters themselves. A set of similar states can be speci�ed,
for example that di�er by one bit from a reference state (a Hamming distance
of one). The distribution of the set across the basin of attraction �eld indi-
cates the network's response to a one bit perturbation to its current state of
activation. The dynamics might remain in the same basin or 
ip to a di�erent
basin; remain in the same sub-tree or 
ip to a di�erent sub-tree. Figure 6 gives
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Figure 6: The distribution of a set of similar states di�ering by one bit from the reference
state indicated, are highlighted in basins of attraction. The network is the same as in �gures
1 and 2. Only the basins which contain the set of states and the reference state are shown,
i.e. basins 2, 11, 12 and 13 in �gure 2. Following a one bit perturbation of the reference
state, the dynamics may stay in the same basin or 
ip to one of the other basins with a
predictable probability.

an example. An analogous statistical measure is the distribution of \damage
spread" resulting from many single bit 
ips in a large network16.

The e�ect of perturbation to network architecture, mutating the wiring
and/or rules, can be assessed by the a�ect on the basin of attraction �eld,
analogous to the role of genotype and phenotype. Figure 7 shows the con-
sequences of mutating a single bit in the rule table of just one element of a
small RBN, n=6, k=3. The basin of attraction �eld is a�ected to varying
degrees. The example networks are small so that the pattern at each node can
be shown. Larger networks are a�ected in analogous ways, although in general
the consequences of a one bit mutation become relatively smaller with increas-
ing network size. However a particular one bit mutation may cause drastic
consequences whatever the size, such as breaking an attractor cycle. Note that
the consequences of moving a connection wire is usually greater than a one bit
mutation.

9 Memory

Attractors classify state-space into broad categories, the network's \content
addressable" memory in the sense of Hop�eld4. Furthermore, state-space is
categorized along transients, by the root of each subtree forming a hierarchy
of sub-categories. This notion of memory far from the equilibrium condition
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a. The basin of attraction �eld of the RBN.

b. Rule at element 2, changed to rule 4.

c. Rule at element 5, changed to rule 46.

the network

el. wiring rule

5 2,4,5 62

4 5,0,1 61

3 4,3,5 108

2 2,5,0 5

1 4,2,1 64

0 3,1,2 231

Figure 7: The con-
sequences of mutat-
ing a single bit in
the rule table of
just one element of
a small RBN, n=6,
k=3. The state at
each node is shown
as a 3�2 bit pattern.
Above: Network ar-
chitecture.

of attractors greatly extends the classical concept of memory by attractors
alone13. Although such a discussion would seem only to relate to the area of
neural networks, it also applies to genomic regulatory networks in the sense
that they must \remember" and return to their cell types (and sub-types) as
they are continually perturbed by internal and external factors.

It can be argued that in biological networks such as neural networks in the
brain or networks of genes regulating the di�erentiation and adaptive behavior
of cells, the topology of attractor basins, the network's memory, must be just
right for e�ective categorization. The dynamics need to be su�ciently versatile
for adaptive behavior but short of chaotic to ensure reliable behavior, and this
in turn implies a balance between order and chaos in the network.
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Figure 8: A histogram of attractor types against the frequency of each type sorted by
frequency for a 2d RBN 36�36, k=5, with fully random wiring and a fraction of canalising
inputs C=52%. The data was assembled by running the network forward from a sample of
about 26,000 random initial states and recording the fraction of di�erent attractors reached,
about 220 types in this sample. The frequency of arriving at each basin of attraction indicates
its relative size, the number of states it contains.

10 Attractor basins of large networks

Time and memory constraints limit the size of networks when computing basin
of attraction �elds, with a practical upper limit of about n=26, though DDLab
allows n � 31 given su�cient memory. Single basins of attraction and sub-
trees can be computed for much larger networks. However, data on the basin
of attraction �eld can be assembled for large networks by statistics on forward
dynamics where the demands on memory are much smaller.

The number and relative size of the di�erent basins in the basin of attrac-
tion �eld can be inferred from a histogram of the frequency of reaching di�erent
attractor types from many random initial states. Other data such as attractor
length and average run-in length are also available. In the example in �gure
8 the rules scheme is randomly biased to give a fraction of canalising3 inputs
of 52%. Canalization occurs when a particular input (0 or 1) on a connection
determines a gene's value irrespective of its other inputs. That connection is
then said to be canalising. This tunes the network to achieve a balance between
order and chaos according to various dynamical measures (see below).

11 Order-chaos measures of large networks

The wiring/rule architecture of RBN can be biased to produce the percolation
of \frozen" genes, that have become �xed on or o� over time6. These biases
have been correlated with data on biological genomic networks3 and are under-
stood to confer stability to the cell type, while the remaining unstable genes
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provide adaptability. The dynamics is seen as being marginally on the ordered
side of an order-chaos phase transition in the space of all possible network
architectures according to a number of measures. In particular, increasing the
degree of canalisation of network rules moves behavior across the transition,
though the characteristics of network wiring also plays a role. Order-chaos
measures16 listed below may be studied with DDLab, based on statistics on
large networks as well as exact data on small networks.

� Measures on the topology of attractor basins and subtrees such as their
in-degree distribution.

� The Derrida plot2, analogous to the Liaponov exponent in continuous dy-
namics, measures the divergence/convergence of trajectories from pairs of
initial states separated by a varying Hamming distance.

� The distribution of \damage spread", where the di�erence between trajec-
tories from pairs of initial states di�ering by one bit is monitored, and the
distribution of this damage size is measured.

� The percolation of frozen regions, where the fraction of genes in a network
that have stabilized on or o�, or that continue to 
icker is identi�ed. This
allows the distribution of \frozen skeletons" to be measured, characteristic
frozen patterns that are treated as quasi-attractors.

� The distribution of attractor types as shown in �gure 8.

� Input-entropy over time relating to single genes, which measures the fre-
quency with which neighborhoods in the gene's rule-table are activated over
a moving window of time-steps, and the entropy calculated.

12 Conclusion

Attractor basins of discrete dynamical networks provide key insights into a
network's global dynamics. Idealizations of genomic regulatory networks are
modeled as random Boolean networks, where the range of biases in network
architecture can be tested against theories and data from cell biology. A broad
range of characteristics, parameters and measures of global dynamics, as well as
dynamics along particular trajectories, are now open to investigation, includ-
ing the number of attractors (cell types), their size distribution and topology,
stability and adaptability to perturbations of both patterns of activation and
network architecture, issues of the network's memory and the inverse problem9,
and order-chaos measures on network dynamics. The software Discrete Dy-
namics Lab15 is a tool for these investigations. DDLab continues to be devel-
oped with new capabilities in response to current research ideas.
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