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A novel approach for analyzing multiple protein structures is presented. A family
of related protein structures may be characterized by an a�ne model, obtained by

applying transformationmatrices that permit both rotation and shear. The a�ne
model and transformationmatrices can be computede�ciently using a single eigen-
decomposition. A novel method for �nding correspondences is also introduced.

This method matches curvatures along the protein backbone. The algorithm is
applied to analyze a set of seven globin structures. Our method identi�es 100 cor-

responding landmarks across all seven structures. Results show that most helices
in globins can be identi�ed by high curvature, with the exception of the C and

D helices. Analysis of the superposition reveals that globins are most strongly
conserved structurally in the mid-regions of the E and G helices.

1 Introduction

Analysis of protein structures is most informative when we can examine a fam-
ily of related structures, rather than a single structure. Families of structures
are more revealing because commonalities and variations within the family
suggest the relative importance and possible functions of amino acid residues.
Protein structural families are generally studied by rotating the structures
to superimpose corresponding atoms. From this multiple superposition, re-
searchers sometimes calculate an \average" structure by averaging the coordi-
nates of the corresponding atoms.1

In this paper, we take a di�erent approach to analyzing multiple protein
structures. We assume that variations in protein structure can be represented
by a statistical model. We solve that model to obtain a \template" structure
that describes the entire family. Our statistical model allows each protein
structure to undergo a general a�ne transformation, which permits not only
rotations, as in existing approaches, but also shear in three dimensions.

Because we allow a�ne transformations, we can perform averaging and
superposition simultaneously. Our method essentially �nds the eigensolution
to a least-squares problem. In the least-squares formulation, we �nd an a�ne



modelM and transformationmatrices Bj that minimize the objective function

JX
j=1

kMjBj �Mk2 (1)

where each Mj is a coordinate matrix of corresponding atoms in the J protein
structures. It can be shown that, under certain assumptions, the model found is
the maximum likelihood estimate of the average protein structure.2 Therefore,
we view the analysis of protein families not merely as a superposition problem,
but as a problem in modeling. The modeling approach is more general than
superposition, and can be extended to handle di�erent assumptions about how
protein structures vary.

Given a set of correspondences, we can obtain the a�ne model quickly, us-
ing a single eigendecomposition.3 In contrast, when only rotations are allowed,
the optimal superposition of multiple structures requires iterative or stochastic
techniques.4;5;6;7 Existing methods try to �nd rotations �j that minimize the
sum of distances between all pairs of structures:

JX
i=1

JX
j=i+1

kMi�i �Mj�jk
2

This rotational superposition requires an iterative algorithm, whereas the op-
timal a�ne model can be obtained in a single step.

Both the rotational and the a�ne approaches require a correspondence
among atoms in the di�erent protein structures. In this paper, we also present
a novel method for the correspondence problem. We show that an initial corre-
spondence can be found quickly and relatively accurately by matching curva-
tures. We have found that curvature along the backbone of a protein structure
serves as a useful \signature" that highlights the main features of the struc-
ture, including helices, strands, and loops. Moreover, curvature is invariant to
rotation and location. Therefore, curvature allows us to make a preliminary
correspondence among protein structures, without having to superimpose the
structures beforehand. The method of matching curvatures provides an alter-
native to existing methods for �nding correspondences. Because curvature is
a scalar function, it simpli�es the dynamic programming procedure compared
with matching vector sets,8;9 distance matrices,10 or properties.11

In the remainder of the paper, we present procedures for computing cur-
vatures, a�ne models, and a�ne superpositions. These procedures constitute
a complete algorithm for modeling and superimposing multiple protein struc-
tures. We then apply our method to analyze the globin family, and identify the
commonalities and variations that are revealed using a�ne transformations.



2 Methods

2.1 Formulation

The a�ne transformation algorithm takes as input a set of J protein struc-
tures, with arbitrary orientations and shifts relative to the origin. Each protein
structure is represented by a structure matrix Sj, which is an Nj � 3 matrix
of coordinates. Each row in the matrix contains the x, y, and z coordinates
for an atom in the protein structure. In this paper, we consider only the back-
bone, represented by the C� atoms, ordered from the N- to the C-terminus.
However, it is possible to extend our approach to consider other atoms as well.

We adopt a statistical model for the observed protein structures. We
assume that the given family may be described by a template or a�ne model

M, which is an N � 3 matrix of landmarks. A landmark is a point that is
assumed to be common to all structures in the given family. A set of landmarks
describes a correspondence among the protein structures. The corresponding
landmarks for each protein structure Sj are represented by a landmark matrix

Mj , which contains a subset of the atoms in Sj. Our model assumes that
each landmark matrixMj di�ers from the a�ne model M, both globally and
locally, by the following relationship:

Mj =MB
�1
j

+ 1�
T

j
+ "j (2)

where Bj is a 3�3 a�ne transformation matrix , �
j
is a 3�1 o�set vector , and

"j is an N � 3 error matrix . The o�set vector describes the global translation
di�erence between each structure and the a�ne model; the transformation ma-
trix describes the global rotational and shear di�erence; and the error matrix
represents local di�erences for each landmark.

Our algorithm consists of three steps: (1) Compute a curvature func-

tion �j for each protein structure Sj. Find corresponding landmarksM(1)

j
by

matching curvatures to a reference structure, and obtain the a�ne modelM
(1)

and transformation matrices B
(1)

j
. (2) Find corresponding landmarksM

(2)

j
by

matching coordinates to a reference structure, and obtain the a�ne modelM
(2)

and transformation matrices B
(2)

j
. (3) Find corresponding landmarksMj , by

matching coordinates iteratively to the evolving a�ne model , and obtain the
a�ne modelM and transformation matrices Bj .

Our algorithm spends most of its time �nding and re�ning corresponding
landmarks. If the landmarks were known in advance, our method would require
only a single step to obtain the a�ne model and transformation matrices.



2.2 Curvatures

Our algorithm begins by computing the curvature at each C� carbon along
the backbone of each protein structure. Let us label each C� atom in protein
Sj by a sequence index s = 1; : : : ; Nj. Since the series of peptide bond lengths
between adjacent C� carbons has relatively constant length, the index s also
serves as an arc length parameter along the backbone. Let the position of C�
at index s be pT

j
(s) = [xj(s) yj(s) zj(s)], where xj(s), yj(s), and zj(s) are

coordinates from structure matrix Sj.
Then we perform two rounds of numerical di�erentiation:

�pj(s) = [pj(s + 1)� pj(s � 1)]=2 (3)

tj(s) =
�pj(s)

k�pj(s)k
(4)

dtj(s)

ds
= [tj(s+ 1)� tj(s� 1)]=2 (5)

�j(s) =


dtj(s)

ds

 (6)

where tj(s) is the unit tangent vector and �j(s) is the curvature at s =
3; : : : ; Nj � 2.

2.3 Corresponding Landmarks

We compute corresponding landmarks using dynamic programming, which is
also known as dynamic time-warping in other literature.12 Dynamic program-
ming �nds a correspondence between two structures that minimizes the overall
distance between the structures. Let r and s be the sequence indices of atoms in
structure matrices Si and Sj, respectively. Let d(r; s) be some distance metric
between atoms r and s. Then we would like to �nd two collinear sequences of
atoms 1 � r(1) < r(2) < : : : < r(m) � Nr and 1 � s(1) < s(2) < : : : < s(m) � Ns

that minimize the function

mX
i=1

d(r(i); s(i)) + g(0; r(1)) +
m�1X
i=1

h(r(i); r(i+1)) + g(r(m); Nr + 1)

+ g(0; s(1)) +
m�1X
i=1

h(s(i); s(i+1)) + g(s(m) ; Ns + 1) (7)

where g(x; y) is the gap penalty for skipping from x to y at the end of either
sequence, and h(x; y) is the gap penalty for skipping from x to y in the middle



of either sequence. Gap penalty functions may be arbitrarily complex, but
when they are linear functions, the time complexity is reduced from O(n3) to
O(n2).13 Hence, we use g(x; y) = �0+ �0(y� x), and h(x; y) = �1+ �1(y � x),
except we require the gap penalty be zero when y � x = 1. The parameters
� are opening penalties, and the parameters � are extension penalties. We
typically choose smaller penalties for g, because protein sequences often have
variable-length ends that do not correspond well to other sequences.

The three steps apply dynamic programming with di�erent distance met-
rics:

d(r; s) =

8<
:

(�i(r) � �j(s))2 for step 1
kpi(r)� pj(s)k2 for step 2
kp
M

0(r) � pj(s)k2 for step 3
(8)

In steps 1 and 2, we compute distances relative to a reference structure Si.
The reference for step 1 is simply the longest protein. The reference for step 2
is the protein structure closest to the initial a�ne model obtained in step 1.

In step 3, we transform the a�ne modelM into a structure M
0

in the space of
Sj, and then measure distances relative to the transformed model. We explain
this transformation further in Section 2.5.

2.4 A�ne Models and Transformation Matrices

For each round of corresponding landmarks, our algorithm computes an a�ne
model and set of transformation matrices. Let us assume that each landmark
matrixMj is centered by subtracting 1�

j
, where the o�set vector �

j
contains

the mean x, y, and z coordinates ofMj . Our algorithm stores �
j
at each step,

for use in later superpositions.
The objective function in equation 1 can be solved using least-squares

regression, following a method described by Hastie and colleagues.3 To avoid

degeneracies, we require thatM is orthogonal, soM
T

M = I. Then the optimal
transformation matrix for Mj is Bj = (MT

j
Mj)

�1
M

T

j
M and hence MjBj =

HjM, where Hj = Mj(M
T

j
Mj)

�1
M

T

j
is a projection operator. So at the

minimum, the quantity in equation 1 equals

JX
j=1

k(Hj � I)Mk2 =
JX

j=1

tr(M
T

(I �Hj)M) = Jtr(M
T

(I �H)M) (9)

where H is the average of the projection operators Hj . The solution for the
a�ne model that minimizes the above quantity can be obtained by letting M
be the eigenvectors corresponding to the three largest eigenvalues of H.



In practice, to achieve better numerical stability, we perform the above
computations by using QR decompositionsMj = QjRj, where Qj is orthogo-
nal and Rj is upper triangular. This decomposition then allows us to compute
Hj = QjQ

T

j
and Bj = R

�1
j
Q

T

j
M.

2.5 A�ne Superpositions

Several steps of our algorithm compare one protein structure to another or
to the a�ne model. We make these comparisons using the transformation
matrices and o�set vectors computed in the previous section. To superimpose
the a�ne model M onto a protein structure Sj or landmark matrix Mj, we
apply the inverse of the transformation matrix to obtain

M
0

=MB
�1
j

+ 1�
T

j
(10)

where �
j
is the o�set vector for Mj .

To superimpose one protein structure Si onto another Sj, we transform
Si into the model space and then transform it into the space of Sj:

S
0

i
= (Si � 1�

T

i
)BiB

�1
j

+ 1�T

j
(11)

where Bi and Bj are transformation matrices and �
i
and �

j
are o�set vectors

for Mi and Mj , respectively.

2.6 Decomposition of Transformations

The a�ne superpositions described in the previous section may introduce shear
components. The amount of shear may be determined as follows. Let us
consider the superposition matrix T = BiBj that superimposes structure Si
onto Sj. This matrix can be decomposed into a pure rotation R followed by a
pure scaling D, then a shear Z:

T = RDZ (12)

where R is orthogonal, D is diagonal, and Z is upper triangular with ones
along the diagonal. We can solve for the components by letting G be the
Cholesky decomposition of TT

T and setting D equal to the diagonal entries
of G. Then Z = D

�1
G and R = TG

�1. The upper triangular entries of Z
measure shear of each axis relative to other axes.
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Figure 1: Curvature and curvature-basedcorrespondence for globins. The curvature function

for each globin is drawn in heavy lines. The location of helices for each globin are denoted by
rectangles. Corresponding landmarks are shown as dotted lines between curvature functions.

3 Results

We now present a case study involving the globin family, chosen largely because
it has been studied extensively in prior studies of protein structure families.14;8;1

We studied the seven globin structures examined by Bashford and colleagues:14

human deoxy-hemoglobin � (PDB accession 4HHBA) and � (4HHBB), sperm
whale deoxy-myoglobin (5MBN), larval deoxy-hemoglobin (from Chironomous

thummi , 1ECD), sea lamprey cyano-hemoglobin (2LHB), yellow lupin root
nodule cyano-leghemoglobin (Lupinus luteus, 2LH3), and annelid worm deoxy-
hemoglobin (Glycera dibranchiata, 2HBG).

We implemented the algorithm in the statistical computing language S-
Plus, except for the pairwise dynamic programming procedure, which was
written in C and loaded dynamically into S-Plus. We executed the program on
a Silicon Graphics O2 workstation with a 175 MHz MIPS R10000 processor.
For gap penalties, we set all opening penalties � to 0. The remaining penalties
were: �0 = 0:01, �1 = 0:02, in step 1; �0 = 8, �1 = 16, in step 2; and �0 = 4,
�1 = 8, in step 3. Our algorithm required 12 CPU seconds to execute.

The curvature functions are shown in Figure 1. The �gure also shows the
location of the �-helices for each globin, as de�ned by Bashford and colleagues.



Figure 2: Relationship between curvature and secondary structure. The �gure on the left is
sperm whale myoglobin (5MBN); on the right is the variable light chain of immunoglobulin

NC41 (1NCA). Each C� carbon is shaded according to its curvature, from black (curvature
of 0.0) to white (1.0).

Each curvature function has discrete regions of relatively high and constant
curvature|corresponding to the helices|separated by regions of lower, more
variable curvature|corresponding to the loops. The curvature is unusually
variable in the C and D helices, and only 4HHBB, 5MBN, and 2LHB have
clearly de�ned D helices. Between helices F and G, all structures have a
sequence of 2 to 3 amino acids where the curvature drops sharply. The common
element to all sequences appears to be a small hydrophobic residue|valine or
isoleucine|surrounded by one or more charged amino acids.

The relationship between curvature and secondary structure is illustrated
clearly in Figure 2, which maps curvature onto the three-dimensional structures
of a globin and an immunoglobulin. The high curvature for �-helices in globins
contrasts sharply with the low curvature for �-strands in immunoglobulins.
Loops generally have intermediate curvature.

In step 1, our algorithm found 104 corresponding landmarks by matching
curvatures to the reference structure 5MBN, chosen because it is longest. The
pairwise dynamic programming procedure for matching curvature is demon-
strated in Figure 3 (left), which shows the match between 5MBN and 1ECD.
The resulting set of landmarks for all structures is shown as dashed lines in
Figure 1. Landmarks were found primarily in the helices, and virtually none
in the regions between helices.

In step 2, our algorithm found 108 corresponding landmarks by matching
coordinates to the reference structure 5MBN, chosen because it was closest to
the a�ne model obtained in step 1. The coordinate-based pairwise dynamic
programming procedure is illustrated in Figure 3 (right).
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Figure 3: Dynamic programmingmethod for �nding correspondences, using curvature (left)
and coordinate distance (right). Distance metrics are plotted as images, with darker intensity

representing smaller distance. Optimal solutions are plotted as points on each graph.

Step 3 of the algorithm re�ned the sets of landmarks in four iterations,
yielding 102, 100, 100, and 100 landmarks, successively.

For comparison, the manual model by Bashford and colleagues has 115
positions that could be considered landmarks (i.e., having one representative
from each globin). Their landmarks generally agreed with ours in the B, C, E,
and G helices. Di�erences occurred primarily in the A helix, where our model
had 2LH3 shifted by 3 to 4 residues relative to the manual model, and in the
F helix, where our model had 2LH3 shifted by one residue. The manual model
has no landmarks in the D helix, whereas our model has one landmark there.
Our model also omitted the landmarks in the extreme N and C termini of the
globin sequences. The �nal correspondence is listed in Figure 5.

Our �nal superposition is shown in Figure 4, which shows the a�ne model
and each of the original protein structures superimposed onto the space of
5MBN.

The amount of structural variation can be quanti�ed by measuring resid-
ual deviations from the model. We compute the residuals by superimposing
the a�ne model onto each landmark matrix and measuring the di�erences be-
tween corresponding coordinates. The resulting residual matrix ej provides an
estimate of the error matrix "j in equation 2. If we assume that "j is isotropic,
the unbiased estimate of the variance at each landmark s is the mean square
error

P
J

j=1 kej(s)k
2=(J � 1). Figure 5 shows the variability across all land-
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Figure 4: A�ne model and superposition of globins. The superposition is shown on the left,
with a schematic on the right. The a�ne model is represented by a chain of open circles.

The seven globins are represented by line segments.

marks. We see that the mid-regions of helices E and G are conserved the most,
which makes physiologic sense, since both helices make close contact with the
heme group. The distal histidine residue in the E helix, which interacts with
the heme group, is particularly well conserved.

To determine the amount of shear introduced, we decomposed the trans-
formation matrices as in section 2.6, using transformations onto the space of
5MBN. The average shear component was 1.1% with a standard deviation of
4.0%. Shear ranged from�9:2% (in one component of 1ECD) to +8:7% (in one
component of 2LH3). Nevertheless, the a�ne model showed reasonable geom-
etry. For comparison, we computed a purely rotational model using the same
landmarks. The root mean square di�erence between C�-C� bond lengths in
the two models was 0.09�A, and between C�-C� bond angles, it was only 1:9�.

4 Discussion

We have developed a new approach to analyzing families of protein structures.
Our approach introduces a di�erent way of thinking about the problem. The
problem changes from a superposition task to a modeling task, and the algo-
rithm changes from �nding rotations to �nding a�ne models.

Our approach is closely related to regression analysis.2 This relationship
opens the possibilities for new ways to analyze protein families, especially be-
cause the �eld of regression analysis is well developed. The speed and simplicity
of our approach also creates new opportunities for further study. Our method
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Figure 5: Structural variability of the globins. Residual standard deviations are plotted

versus correspondence index. Helices are marked by solid rectangles and labeled from A to
H. The corresponding amino acids for the seven globins are also printed.

generates a�ne models in a matter of seconds, and this speed may permit
other types of investigations, such as cluster analyses of protein structures.

By allowing shear, we introduce some new issues in protein modeling.
Although our method may appear to allow unnatural amounts of shear, the
resulting a�ne model is constrained by the matching bond lengths and angles
in the data. In the case of the globins, the a�ne model had reasonable geometry
in comparison with a purely rotational model. Second, shear adds exibility
to the comparison of di�erent structures. This allows us to see similarities
between protein structures that more constrained methods may miss. For
instance, by relaxing the rotational constraint, Diamond 15 was able perform
a pairwise superposition of oxy- and deoxyhemoglobin. Protein structures are
exible, rather than rigid objects.

Curvature matching is similar to hierarchical secondary structure meth-
ods for �nding correspondences,16 but does not require prior de�nitions of sec-
ondary structure. Moreover, curvature analysis may be useful in other applica-
tions. Curvature reveals secondary structure elements readily, and matches of
curvature may show quickly whether two structures are similar, even without
performing a superposition. Hence, curvature may be useful for scanning the



structural database quickly.
Studies of curvature may also provide insights into protein structure. Cur-

rently, local conformations of amino acids are characterized by �- angles,
which represent torsional angles between adjacent residues. Because curva-
ture represents local conformation di�erently, further studies of curvature may
enhance our understanding of the sequence-structure relationship in proteins.
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