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Since A. M. Turing’s paper proposing a mathematical basis for pattern formation in
developing organisms many mathematical approaches have been proposed to model
biological phenomenon. Continued laboratory study and recent improvements in
measurement capabilities have provided an immense quantity of raw gene expression data.
The level of data now available demands the development of well-characterized and tested
computational tools. Thus, we have examined one mathematical model’s sensitivity to errors
in estimating its’ parameters. Errors in parameter estimation can arise from noise in the
laboratory measurements and recasting of laboratory data. We elected to examine the rule-
based mathematical model of Mjolsness et al for its’ sensitivity to errors in estimated
parameters. We have used the technique of sensitivity equations as generally applied in
nonlinear systems analysis.

1   Background

In 1952 A. M. Turing1 published the watershed paper which resulted in the field of
computational biology. His work introduced the idea that the formation of patterns
in developing organisms could be described mathematically. Turing then provided
several examples that demonstrated the feasibility of his approach. The examples
given in his work were computed without the benefit of the digital computer, which
was not commonly available in the early 1950’s.

Turing also made several statements, which stand today, about the mathematical
description of biological organisms. Turing recognized that the change of state of a
cell is the sum of all forces acting on that cell. He included Newton’s law forces,
stresses and osmotic pressures from the cell chemistry, the chemical reactions
themselves (which currently are treated as the most important aspect) and the
diffusion of chemicals within the physical limitations of the system. However, he
limited his discussion to those cases in which the chemical aspect was the most
important.

Turing also stated that “The function of genes is presumed to be purely
catalytic. They catalyze the production of other morphogens, which in turn may only
be catalysts. Eventually, presumably, the chain leads to some morphogens whose
duties are not purely catalytic.” This simple truth was not confirmed until much later
in the study of molecular biology.

One final point that Turing raised concerns the extensibility of his analysis. He
argued that anyone with the desire could extend his analysis to any number of
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morphogens. However, he stated that “…no essentially new features appear when
the number is increased beyond three.” This conclusion was driven by his
mathematically analysis of systems of morphogens as he called them.

Examples of the later in-depth study of Turing’s work can be found in
Meinhardt and Gierer2, Haken and Olbrich3, and Glass and Pasternak4 among others.
They extended Turing’s analysis to include the mechanical features of developing
systems and were particularly interested in determining the conditions under which
the systems moved into radically different solution spaces.

Mjolsness et. al.5 incorporated the idea of a grammar composed of rules for
modeling living organisms. The essential features of their approach were the
encapsulation of biological functionality into six classes of rules, the ability to track
the explicit generation of each cell, and incorporation of explicit geometry into the
model. Different rules may be defined within each rule class allowing extensions as
more understanding of molecular biology is gained. This implicit modularity also
allows their method to be easily implemented as object-oriented software.

Reinitz et al6 as a proof of concept of their method, postulated a model system
and fitted that model to experimental data. This highlighted the major computational
impediment in using their and any other differential equation approach. Since most
of the models do not have closed form solutions, but must be solved analytically, the
parameters must also be determined analytically. The method that is commonly used
is simulated annealing, a computationally expensive method. Advances in both
hardware and software algorithms are making this latter problem more tractable.

The latest approach to solving gene control circuits is the application of boolean
networks. Boolean networks propose that gene control networks can be solved by
considering only the “on” or “off” state of a particular gene. [e.g. Somogyi7]. This
approach relieves the computational problems inherent in the differential equation
methods. However, these studies soon become difficult due to the complexity
introduced by both the number of driving states and number of rules that may be
active in the organism.

Thomas8, Thomas et al9, and Thieffry and Thomas10 introduce methods for
treatment of feedback loops in biological descriptions aimed at simplifying the
identification of the loops. They also introduce multi-level logical variables to
address the problem of genes having membership in multiple control circuits. A
gene with membership in more than one gene control circuit may have differing
thresholds of activity in the alternative circuits. Their method lies between the
continuous differential equation approaches and the two-state boolean network
approaches.

Each of these methods have or are proving their value in the discovery of gene
control circuits. The ultimate success in decoding genetic control mechanisms will
depend on the intelligent development, selection and application of a variety of
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computational tools. A major part of the tool development process is the proofing of
the proposed tools. Thus, in this paper we have elected to examine the Mjolsness et
al5 method for its’ sensitivity to errors in parameter estimation.

2   Introduction

Figure 1 shows schematically the general process that is followed in developing a
model to study biological data. The blocks are intended to show both the choices that
must be made and the actions that are taken to move from the laboratory to an
operational model. This figure does not exhaustively cover all options that must be
addressed to develop a complete operational model. It also does not indicate the
iteration that is necessary to successfully produce an operational model. We are

presenting this overview
of the model development
process in order to place
the sensitivity analysis
presented below in
context. We will limit our
discussion to the lower
right corner of the chart in
the block labeled “Model
Verification”.

Once we have
developed an operating
model, we want to ensure
that the model passes
several tests before it is
applied to a real-world
problem. The tests we
have included in the
”Model Verification”

block relate to the stability and sensitivity of the model, the domain of the model and
the realism of the model. Realism seeks to insure that the model produces results
within the domain for which we have defined the model. One method is to test the
operating model against data for which we have expected answers. This insures that
the model indeed performs as we would expect.

One additional test would be to attempt to force the operating model to produce
answers that are at variance with the input data. Stated differently, we want to ensure
that the model performs correctly with correct input data and does not perform
correctly with known faulty data. This is the methodology that will enable us to
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Figure 1: Schematic representation of the major steps that are
undertaken to develop a model of a biological system. The major
thrust of this paper is concentrated in the lower right box. This
depiction does not indicate all the alternate paths available to
work from the laboratory to an operational model, nor does it
show the iteration between steps required to successfully derive
an operational model.
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ascertain that the model operates properly within its’ defined domain and only
within its’ defined domain.

The final entry in the “Model Verification” block addresses the stability and
sensitivity of the model. Stability can be effectively thought of as a measure of the
“robustness” or dynamic range of the model. It is the answer to the question of
whether or not the model will settle to its’ proper solution space when excited across
a broad range of input conditions.

It should be noted that testing for realism and domain is performed after the
parameters have been determined. Most practitioners of modeling recognize that this
is the most critical activity in developing a model (after selecting the analysis
method). Parametric determination must be performed each time new data becomes
available. Thus, we should be aware of both the errors that could be introduced into
the model by parametric errors and the impact that the required precision for the
parameters has on the time needed to determine the parameters.

Some modeling approaches proposed for biological problems involve
computationally intensive parameter determination methods. Mjolsness et al5 elected
to use simulated annealing, which is computationally intensive, due to the hybrid
nature of their model. It would be a plausible to argue that when a modeling
modality requiring computationally intensive parametric determination is selected,
any steps possible should be taken to reduce the computational load required to
determine the parameters. The ability to judge how much the computational load can
be reduced begins by determining how sensitive the proposed model is to parametric
errors. Sensitivity analysis is one measure of how much error is introduced by
parametric errors. In that light, we proposed a reasonably sized model system and
applied one form of sensitivity analysis to it.

3 Example Gene Circuit

We generated a synthetic, three-gene circuit for this sensitivity analysis based on the
method of Mjolsness et al5 which describes the dynamics of the model system with
differential equations. While the circuit shown does not represent any actual
biological control circuit, it was created to replicate several features of known
circuits such as periodicity, promoter / suppressor, and lead / lag relationships
between genes [e.g. see Novak and Tyson11]. We set the size at three genes to keep
the number of sensitivity equations in a reasonable range.[There are several real-
world biological systems of importance that can be modeled using this number of
genes. An example is the stochastic gene circuit explored by Barkal and Leibler12.
Another example is the deterministic developmental circuit that forms the initial
D. melanogaster body plan from a circuit of five critical genes (discussed in Reinitz
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et al6)]. The parameters were selected empirically to give the relationships shown.
Figure 2 shows this
three-gene, synthetic
circuit.

In this circuit,
Gene 1 and 2 (the lower
of the three profiles) are
initially at zero
concentration and
Gene 3 is at a
concentration of one.
The circuit as shown is
periodic with a period of
approximately 26

minutes. This
synthetic system was
simulated for a total
time of 30 minutes
using one-half minute
time steps.

Equations (1), (2), and (3) below describe this adaptation of Mjolsness et al5.
The subscript identifies the state vector component (a would take the values one
through three for our three-gene system).
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In this system, v represents the state vector of the system. This state vector
would be the observed experimental data. The R is the rate of synthesis of the

Time

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

Gene 1
Gene 2
Gene 3

Figure 2: Synthetic, three-gene circuit that demonstrates several
biologically relevant relationships – periodicity, promoter /
suppressor, and lead / lag phasing – between genes. A Khalil
sensitivity analysis was applied to this particular system to
measure the effect of parameter errors on the system.
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components of the state vector and κ is the rate of decay. Decay is better understood
when stated as a half-life rather than the ratio represented by κ. The κ term is
computed by dividing the t1/2 in the table below by ln(2). The u term captures the
interactions between each of the state vector elements in the T or interconnect
matrix. The h term captures the effect of elements regulating the particular state
vector element not explicitly represented elsewhere. For the synthetic, three-gene
circuit shown in Figure 2, the parameter values of the first assumed nominal solution
are given in the table I.

The T matrix deserves some additional explanation. The T or interconnect
matrix accounts for the possibility that any gene in the system can have a regulatory
effect on any other gene including itself. The diagonal elements represent self-
regulation of each gene with the off-diagonal elements representing cross-regulation.
The h parameters indicate the regulatory effect of other factors not explicitly stated
in the model.

5.01 =R 0.211 =T 0.212 −=T 0.213 =T 0.21 −=h 0.321
1 =t

5.12 =R 0.121 =T 0.222 −=T 5.123 −=T 5.02 =h 5.121
2 =t

1.13 =R 0.331 −=T 0.232 =T 0.333 =T 0.03 =h 5.121
3 =t

4   Sensitivity Analysis

Differential equation based models require us to determine the parameters of the
model from experimental data. The quality of the fit is dependent on the quality of
the data. The quality of the data can be affected by several factors. One factor
affecting data quality is noise inherent in the measurement process. We will assume
that any experimental data available to us was collected using trusted, well-
characterized, laboratory protocols. The data is corrected for known protocol biases
and the noise in the data considered to be zero mean noise. Zero mean noise, if its’
amplitude is small compared to the data amplitude, generally can be ignored in a
parameter fitting problem. We recognize that experiment size also governs the

Table I: Values for the first assumed nominal parameter set for the three-gene system defined above. R
is the maximum rate of production for each gene, the T terms indicate the effect of the second gene
number on the first, the h terms account for those factors affecting each gene that are not explicitly
stated elsewhere in the system. The t terms indicate the half-life of the individual genes. The κ term is
derived from the t by dividing ln(2) by t.
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quality of the data. Wen et al13 is an example of a very well controlled and repeatable
set of experiments resulting in high quality data.

Another consideration is whether or not the data has been recast in any manner.
Recasting typically occurs during the reading and recording of data. An example of
data recasting is explained in Reinitz et al6. In this case, the results from the
laboratory are scaled to fall in a range of zero to ten. Data recasting has the potential
to remove information from the data set and must be understood in the context of the
analytic method used before the results can be properly interpreted. [See Erb and
Michaels14 for further discussion.].

Fitting a differential equation model is can be computationally intensive. Fitting
methods all define a cost function that is used as a measure of success for the fitting
operation. A typical cost function is the sum of the  squared errors between the
experimental data and the results of the model with a given trial parameter set. The
goal is to make orderly adjustments of the trial parameter set to drive the cost
function to its’ minimum. Once the cost function reaches this minimum, the trial
parameter set is adopted for use in the model.

For well-behaved systems (cost functions with only one global minimum), there
are few limitations in methods that can be used to find the best parameter set.
However, biological systems rarely have a cost landscape with a single minimum.
Thus, computationally expensive fitting methods (recognized by Marnellos and
Mjolsness15) need be employed. The usual choice in this case is simulated annealing.
The tradeoff that must be considered in using simulated annealing is the balance
between the required accuracy for the parameter set and the computational time to
perform the fit. If high accuracy in the parameter set being evolved in not necessary,
then the computational time can be reduced. This leads us directly to a sensitivity
analysis of a Mjolsness et al5 model to errors in the estimated parameters using
methods of nonlinear system analysis.

We selected the method of sensitivity equations, as shown in Khalil16, to
examine the Mjolsness et al5 model. A sensitivity analysis will indicate which
parameters most affect the results of the system. By examining plots of the
sensitivity equations derived by the Khalil16 method, we gain an insight into which
parameters induce the most error in the solution of the system and when in the time
course of the system the errors will be the largest. We have applied these methods to
the periodic system that we defined above, but have not yet applied them to a system
that settles to a steady state (indicative of a point attractor).

This method requires that three points be kept in mind during the sensitivity
study. The first is that the nominal parameter set is known (rarely the case in
biological modeling). In other words, we know the values of the parameters that give
the desired solution. Second, the sensitivity results are valid only if the parameter
values are displaced a “small” distance from the nominal values. Third, the analysis
is valid only on a small, closed time interval.
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The analysis is complete in the sense that the effect of each parameter on each
of the base equations of the model can be determined. This will be come more
apparent as we proceed. First, we will discuss the mathematical basis of the
sensitivity analysis.

The sensitivity equation from Khalil16 (note that κ in these equations represents
the parameter vector of the system under study and should not be confused with κ in
equation (1) above) is

( ) ( ) ( ) ( ),,, 00 λλ tBtStAtS +=& ( ) 00 =tS (4)
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Khalil16 offers that the sensitivity equations can be calculated by solving the (n
+ np) augmented system described below. This system, except in trivial cases, will
necessitate a numerical solution.
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The sensitivity analysis for our example system is comprised of fifty-seven
equations. There are three equations (n) and eighteen parameters (p) in each
equation. Three of the equations comprise the actual system and the remaining fifty-
four are the sensitivity equations for each of the parameters. It is good to keep in
mind that the synthetic, three-gene system used for this analysis is simple compared
to most of practical analytical use.
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5   Results

Examining the results of the sensitivity equations over a period of 30 minutes shows
that the entire system is extremely sensitive to errors in the parameters. All of the
sensitivity curves show an exponential growth in the errors introduced in the system
by errors in the parameter vector. This is not unusual as we rapidly violate the
“nearness” and the “shortness” criteria and the mathematical description of the valid
region for sensitivity analysis contains an exponential term. In our synthetic case, a
single cycle of the system does not meet the criterion for a “short” period of time.

We will not examine all of
the results of the sensitivity
analysis. We will look at three of
the more interesting of the
results. We will limit the display
to the first nine minutes of
simulation time as that captures
the most interesting of the results
without entering the exponential
growth region that masks the
sensitivity results.

Figure 3 is the sensitivity
plot for a part of the synthetic,

three-gene system. This is the
sensitivity of the Gene 3
equations to variations in the
interconnect (T) matrix
parameters. We examined the
plot at the nine-minute point and
found that the parameters that most affect the outcome of the Gene 3 equation are
T13, T11, T33, T31, and T12. This is interesting in that only two of the five most critical
parameters are direct components of the Gene 3 equation. This result be understood
by studying the terms that associate Genes 1 and 3. T13 links Gene 3 to Gene 1 (value
= 2.0) and T31 links Gene 1 to Gene 3 (value = -3.0). With this strong linkage, any
small error in the estimated value of Gene 1 is strongly reflected back onto Gene 3
through the T matrix. Thus, the complex nature of this type of model begins to
become apparent.

Figure 4 show the effect of parameter errors in the decay parameter on the
Gene 3 equation solution. Once more we find that the parameter to which Gene 3 is
most sensitive is not directly in the Gene 3equation. In this case, the decay
parameter in the Gene 1 equation needs to be most accurate followed by the Gene 3
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Figure 3: Plot showing the sensitivity of the system in
figure 2 to errors in five of the nine parameters in the T
or interconnect matrix. The other four parameters
remain at essentially zero for this entire time period.
Here errors in T13 will most effect the solution to the
three-gene system.
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decay parameter. The κ1

parameter is departing from the
zero error point quite rapidly.

The final example of the
sensitivity equations is shown in
Figure 5. This is the sensitivity of
Gene 3 to variability in the R
parameter. R is the rate at which
a particular vector component
can be produced. It is interesting
again to note that at the nine
minute point the Gene 3 equation
is most sensitive to the Gene 1
production constant followed by
the Gene 3 production constant.

We stated earlier that the
first requirement for a sensitivity

analysis is that we know the nominal parameter values. The implication of this
limitation is that if we change any of the parameters in our system, the sensitivities
to parameter error will also be altered. In order to test this implication, we elected to
redefine the nominal parameter set by changing T13, the parameter that was shown
earlier to most affect the Gene 3 results. The change that we introduced was a
reduction of the value of T13 from 2.0 to 1.0.

The first order effect of this redefinition of the nominal parameter set was very
small on the system as a whole. The only readily apparent change was in the period

of the system changed to 28
minutes. Other than the change of
period, there were no radical
departures from the profile
presented in Figure 2. However,
when the sensitivity plots
presented as Figures 3 through 5
are revisited, the changes are less
benign.

With the assumption of a
new nominal parameter set, the
R3 and κ3 terms become the
largest contributors to the
sensitivity errors. The T matrix
terms are rearranged in their
importance, as well. T13 remains
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Figure 4: Sensitivity of the three-gene, synthetic
system to errors in the decay parameters from the
first assumed nominal parameter set for the first nine
minutes.
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Figure 5: Sensitivity of the three-gene, synthetic
system to errors in the maximum gene production
parameter. Note that the system is essentially
insensitive (on this time interval) to errors in R2.
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the most influential parameter with T33 moving into the second most influential
position. T23 moves into the top five most influential T terms. This rearrangement of
sensitivities has implications for the fitting process that will be discussed below.

6   Summary

Reviewing the three caveats from Khalil16 regarding sensitivity analysis is
enlightening in this example. First, the nominal solution of the system must be
available. Since we created the synthetic, three-gene example system for this
analysis, we have met this requirement. We have total knowledge of all the
parameter values and the results that we would expect from the system. What
interests us most is how accurately we must estimate the parameters for this model
of a living organism.

The second caveat was that any errors in the parameter vector will remain
“close” to the nominal values. If this restraint is not met, then the sensitivity
equations will show rapid and large errors. Since the results of the sensitivity
analysis show that each of the sensitivity equations depart exponentially from zero,
the system solution is very sensitive to any parameter error. This implies strongly
that we must have very accurate estimates of the parameters for the Mjolsness et al5

type system. This, in turn, means that we must expend computational power to
achieve our parameter estimate.

Third, the time over which we examine the system must be “short”. In our case,
“short” appears to be approximately one-third of the cycle time of the system.
Within this time period, we can readily determine those parameters that must be
most accurately determined to ensure a smoothly functioning simulation of the
processes we are examining. Outside that time interval the sensitivity results grow so
large that they must be considered invalid.

We also examined the effect on the sensitivity analysis of changing the nominal
system. There was a detectable change in the parameters that most affected the
Gene 3 equations. The implication from this result on the fitting problem is
profound. During the fitting process a trial parameter set is proposed as the nominal
parameter set. If this set is not “close” to the true system solution, massive errors can
be expected in the model performance using this trial parameter set. As sensitivities
are radically affected by the change in a parameter, this gives another indication why
the fitting process is so computationally intensive. Simulated annealing, for
example, generates moves based on the current value of the cost function and the
cost is a function of the accuracy of the model using a trial parameter set. If the
move (change of trial parameter) selected happens to involve the most sensitive
parameter in the current model, then the value of the cost function can be radically
affected.
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Finally, the system that we studied in this paper is relatively simple. It
represented a system with only three genes in one cell. Yet the sensitivity analysis
required 57 equations to be solved. The Mjolsness et al5 methodology allows the
model of a genetic system to be extended to the multi-cellular domain and to
incorporate more complicated dynamics in the model. The solution of the sensitivity
equations for a larger system may be worth the cost if it demonstrates the system to
be insensitive to errors in the model parameters. This in turn would allow a less
rigorous parameter determination method to be employed.
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