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There are various cases where the biological function of an RNA molecule involves

a reversible change of conformation. paRNAss is a software approach to the pre-

diction of such structural switching in RNA. It is based on three hypotheses about

the secondary structure space of a switching RNA molecule, which can be evalu-

ated by RNA folding and structure comparison. In the positive case, the predicted

structures must be veri�ed experimentally. Additionally, we give an animated visu-

alization of an energetically favourable transition between the predicted structures.

paRNAss is available via the Bielefeld Bioinformatics Server 1.

This paper explains the underlying model and shows that the approach performs

well in a variety of applications.

1 Motivation

1.1 Conformational Switching in RNA

RNA ful�lls a broad range of functions in living cells. In messenger RNA, the
plain sequence of bases, the primary structure, is su�cient to determine the se-
quence of amino acids of the encoded protein. In other cases, e.g. in ribosomal
RNA or transfer RNA a certain three dimensional conformation is necessary
for the correct function. This structure is not rigid, and sometimes even a
signi�cant change of shape is required. Such conformational switches have
been proven or are suspected to be involved in several important processes:
regulation of gene expression in prokaryotes by attenuation2, translational reg-
ulation of E. coli ribosomal protein S153, regulation of self-cleavage activity of
Hepatitis Delta Virus 4, translocation process in protein biosynthesis 5, trans
splicing in trypanosomes 6, splicing of pre mRNA by spliceosomes 7.
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To our knowledge, the problem of software support for the detection of
switching phenomena has not been addressed before.

1.2 Properties of Current RNA Structure Prediction Programs

Exploring conformational switching requires knowledge of at least two molec-
ular arrangements. In contrast to 3D-conformation (see e.g. 8), secondary
structure can be determined computationally to a sensible degree of correct-
ness, and with acceptable e�ciency. Therefore it must serve as an approxima-
tion of the 3D shape. Throughout this paper we assume that the switching
involves a change of secondary structure.

paRNAss does not provide another folding program - it uses MFOLD by
Zuker 9, and RNAfold 10, which is part of the Vienna RNA Package.

As is, pseudoknots (as opposed to unknotted or planar structures) are
not recognized by these folding programs. This implies the possibility that a
pseudoknot is detected in the guise of two alternative planar structures close
to the energetic minimum. These might be suggested as alternative positions
of a switch. Hence, paRNAss includes a speci�c check for this situation.

2 Outline of the paRNAss Approach

This section introduces some terminology and explains the paRNAss approach
by means of a successful application, using a known conformational switch.
All algorithmic details, method parameters, pitfalls etc. will go unmentioned
until their detailed treatment in later sections.

2.1 Some Observations and Hypotheses about the Structure Space of a given

RNA sequence

The basic mechanism of RNA structure formation is base pairing. The com-
binatorial structure space of a given RNA sequence x is solely determined
by a given set of pairing rules, most commonly the Watson-Crick pairs (A-
U, C-G) and the pair (G-U). It comprises all the structures that can be
formed according to these rules. The size of the combinatorial structure space
is exponential in the length of x. Waterman gives the asymptotic formulaq

15+7
p
5

8�
n�3=2

�
3+
p
5

2

�n
in 11. Two structures are called neighbours in the

combinatorial structure space if they di�er in a single base pair, i.e. two residues
that form a pair in one sequence, but not in the other.

The biophysical structure space of x is determined by a certain energy
model, given by energy parameters associated with base pairing, base pair
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stacking, and loop formation. The elements of the biophysical structure space
are those which have minimal free energy with respect to all their neighbours.
Thus they are local energy minima in the combinatorial structure space, for
short lmfe-structures. A structure attaining the global energy minimum is
called an mfe-structure. If an RNA folding program is asked to calculate \the"
structure, one such mfe-structure (of possibly many) is returned.

We call an lmfe-structure prominent to the degree k, if any other lmfe-
structure is at least k steps apart, where a step is de�ned as a transition to a
neighbour structure. Clearly, the biophysical structure space is much smaller
than the combinatorial one, but to which extent is currently not known.

The biological structure space �nally is de�ned to comprise the biologically
relevant (functional) structures of x, typically just one structure, or two in the
case of a simple conformational switch. (We do not consider switches with more
than two states here.) The crux of structure prediction is that the biological
structure space is not a subset of the biophysical space under the currently
available models. It is also determined by tertiary interactions of the RNA
molecule, and by interactions with proteins. Still, the biophysical model can
be used to give good approximations; in particular, when these interactions
are known, it is possible (and sensible) to �x the residues involved and apply
energy minimisation only to the others.

Now let us turn to the phenomenon of structural switching. With respect
to the combinatorial structure space, a simple (but maybe surprising) observa-
tion has been reported by Gr�uner 12: Given two arbitrary structures s1 and s2
of equal number of residues, it is always possible to design a sequence x such
that both s1 and s2 are in the combinatorial structure space of x.

We conclude that the combinatorial structure space is too abstract to
provide hints towards potential switches. We need characteristics of the bio-
physical structure space of conformational switches that can be observed by
algorithmic methods. paRNAss is based on the following hypotheses:

1. The two alternative functional structures of a conformational switch are

close to di�erent lmfe-structures, and relatively close to the global energy

minimum. In a case where this hypothesis does not hold, the energy
model is not applicable, and our approach will reveal nothing.

2. These two lmfe-structures are prominent structures of a signi�cant de-

gree, and within a certain energy threshold, there are no other prominent

structures. The justi�cation of this hypothesis is that a switch must
have two clearly distinct states, and a molecule in transition must not
get caught in other local energy minima.
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3. The two lmfe-structures may reside on di�erent energy levels, but a cer-

tain energy barrier must be overcome when switching in either direction.

This hypothesis reects that the switching should not be spontaneous,
but must be triggered by some outside event.

Our approach investigates the biophysical structure space of the target
sequence. If it clearly exhibits the two structures as postulated in Hypothesis
2, these will be suggested as the two conformations of a structural switch
according to Hypothesis 1.

2.2 A Run through a paRNAss Experiment

In the simplest case, a successful paRNAss experiment takes �ve steps:
Step 1: Sampling the structure space Using an RNA folding program,

we draw a sample set S = fs1; :::; spg from the combinatorial structure space
of our target RNA. Since current folding programs cannot determine the true
biophysical structure space, we permit that there may be some structures in
the sample that are not local free-energy minima. If Hypothesis 2 holds, the
sample should contain two \families" of structures, since all structures in the
sample should be close to either the �rst or the second of the two prominent
structures (which themselves may or may not be contained in the sample).

Step 2: Pairwise distance calculation For all si; sj 2 S, we calculate
their pairwise distance d�(si; sj). We do so for at least two di�erent metrics
�1; �2 on the structure space. We plot the results in a �1; �2 coordinate system.

If both elements in a pair are from the same structure family, their distance
should be small. Conversely, if both are from di�erent families, their distance
should be roughly equal to the distance of the two prominent structures. Thus,
if Hypothesis 2 holds, the plotted distance diagram should exhibit two clusters
of points, one in the lower left, one in the upper right. See Figure 1.

Note that such clusters may also occur by chance. Also, the albeit unlikely
case of three equidistant prominent structures would result in a similar plot.
Hence, further steps are necessary.

Step 3: Clustering We use a standard clustering algorithm to split S

into two disjoint clusters C1 and C2, based on the pairwise distances under
either �1 or �2.

Step 4: Consensus structure calculation For each cluster Ci, a con-
sensus structure ci is derived by �rst taking all the base pairs present in the
majority of the members of Ci, and then reapplying the folding algorithm
with these base pairs �xed. Note that the consensi need not be contained in
S. Figure 2 shows the consensus structures derived for our example. As the
clustering program will always return two clusters, another step is necessary to
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Figure 1: Distance Plot showing a clear separation. Average energy barrier d EB between

the two structure families is 20 kcal/mol; string distance d SD is about 10 edit operations.

safeguard against the case of several equidistant prominent structures or other
artefacts.

Step 5: Consensus structure validation To take care of potential
pseudoknots, the pseudoknot distance of c1 and c2 is calculated (see section
3.4). Furthermore, for all si 2 S we calculate the distances d�(si; c1) and
d�(si; c2). We plot these distance pairs as points in a coordinate system. If
Hypothesis 2 holds, the c1 family of sample structures will show up as a cloud
of points near the x-axis, the other family near the y-axis. See Figure 3.

If the outcome of steps 1 { 5 is as described above, we say that paRNAss
predicts the possibility of conformational switching between structures c1 and
c2. We then use the tool RNA Movies13 to visualize an energetically favourable
transition path from c1 to c2.

2.3 Applicability of the paRNAss Approach

There is no intrinsic obstacle to further automate the paRNAss approach. But
at present, human interaction is essential. paRNAss takes great care to pro-
duce visualizations of all its intermediate results. These convey various hints
to the expert, much more than can be discussed here. paRNAss should be
applied in a context where there is some indication for the presence of a con-
formational switch, i.e. knowledge about autocatalytic behaviour, inconsistent
methylation data, or di�erent functions of closely related RNA molecules that
cannot be explained by sequence variation. Ultimately, the suggested confor-
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Figure 2: Predicted structures for L. collosoma

mations should be veri�ed experimentally.

3 Algorithmic Methods

This section describes the algorithms used in steps 1 - 5, explains their Param-
eters and discusses problems of interpreting the results.

3.1 Generating the Structure Sample

We use MFOLD or RNAfold to enumerate (sub)optimal structures within an
energy threshold of the mfe value. This gives rise to three parameters: the
folding temperature T, the suboptimality threshold P (in percent of the mfe-
value), a bound N on the number of structures. If more than N structures are
generated under the given settings of T and P, N of them are randomly chosen
as the sample set for the subsequent steps.

The number of structures generated increases with P and decreases for
increasing T. Note that the bound N is applied after structure generation, so
it bounds the computational e�ort only for the subsequent steps. Typical (and
default) values are T=37, P=15, N=50.

3.2 Metrics for Pairwise Structure Comparison

In contrast to pairwise sequence comparison, there is no generally accepted
model for comparing structures. paRNAss provides three alternative approaches.
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Figure 3: The validation plot shows the distances of all sample structures from the two

consensus structures c1 and c2. This particular plot is based on the energy barrier distance.

The morphological distance dMD is a slightly modi�ed version of a formula
suggested by Zuker 14. Here structures are represented as sets of base pairs.
(i; j) 2 s means that residues i and j form a base pair in s. For two sequences
s1; s2 we de�ne

dMD(s1; s2) = maxfd0MD(s1; s2); d
0
MD(s2; s1)g, where (1)

d0MD(s1; s2) =
X

(i1;j1)2s1
min

(i2;j2)2s2
maxfji1 � i2j; jj1 � j2jg (2)

dMD is strictly positive and symmetric, but does not satisfy the triangle
inequality. Although it is not a metric in the mathematical sense, it behaves
quite reasonably as a distance measure.

The string edit distance dSD of two structures employs their string rep-
resentation with dots and parantheses, e. g. (((.(...)))...), as used with the
Vienna RNA package. We de�ne

dSD(s1; s2) = dw(y1; y2) (3)

where yi is the string representation of si, and dw is an edit distance (i.e. the
score of an optimal alignment) on strings. Being de�ned via the edit distance
model, dSD is a metric. This distance measure is provided with the Vienna
RNA package.

The energy barrier distance dEB is designed to capture the minimal amount
of energy necessary for the molecule to switch between two structures. A tran-
sition path from s1 to s2 is given by a sequence of intermediate structures
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(where each is a neighbour of its predecessor according to 2.1). Let e(s) de-
note the free energy of s.

dEB(s1; s2) = minfd0EB(s1; s2); d
0
EB(s2; s1)g, where (4)

d0EB(s1; s2) = minfe(p)jp is transition path from s1 to s2g (5)

e(p) = maxfe(s)� e(s1)js is intermediate structure in pg (6)

The energy barrier distance uses a discrete model of transition and only
approximates reality, since an RNA molecule need not go through well de�ned
intermediate structures. Furthermore, as the number of paths is excessively
large, our implementation uses a greedy heuristic to approximate dEB .

dEB satis�es the axioms of a metric. In the plots we show the two values
d0EB(s1; s2) and d0EB(s2; s1) instead of dEB(s1; s2). This gives some extra in-
formation about the di�erent energy levels of s1 and s2, but does not a�ect
the general appearance of the distance plot.

Sometimes a distance plot is hard to interpret, as it shows a rather weak
separation, possibly only in one dimension. In such a case, two further exper-
iments should be done. The �rst is to relax the parameters to include some
more structures in the sample. This may make the signal go away or come out
more clearly. If a weak signal persists, this may be an indication of a possible
switch which involves only a small part of the overall structure, while the rest
remains stable. A relatively low energy barrier between all structures in the
example is also a hint in this direction. In that case the sequence should be
cut into shorter parts which are then analysed separately.

3.3 Clustering and Structure Prediction

The clustering step 15 takes two parameters: D names the distance measure
(dMD ; dSD ; dEB) upon which the clustering is to be based. Clusters for dif-
ferent distance measures should be obtained and compared | they often are
consistent even in the case where one of the two measures yields a poor sepa-
ration in the distance plot in step 2. C speci�es the number of clusters to be
generated. Normally, C = 2. Other values can be used when the clustering
appears to be arti�cial.

For each cluster, the consensus is derived using RNAfold as explained in
section 2.2. Again, parameter T indicates the folding temperature.

These two steps generate graphic outputs for the dendrograms and for
squiggle plots of the predicted structures, as well as a string representation of
structures in the Vienna style.
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3.4 Structure Validation

Structure validation takes the string representations of the predicted struc-
tures. It uses dEB or dSD to calculate the distances of each sample structure
to each of the two predicted structures c1 and c2. These are plotted in a
c1; c2 coordinate system. In the positive case, the two structure families show
up as clouds of entries near the d1 and far from the d2 axis, and vice versa.
This proves that all structures in the sample are actually close to one of the
predicted structures (Hypothesis 2), while the structures themselves are su�-
ciently di�erent (Hypothesis 3).

Let s1 [ s2 denote the union of two structures (i.e. base pair sets). De�ne

pkDist(s1; s2) = �1; if s1 [ s2 is planar, (7)

= 0; if s1 [ s2 contains a pseudoknot, (8)

= k; if k is the number of bases with conicting (9)

pairings in s1 [ s2:

paRNAss reports pkDist(c1; c2) in addition to the above visualization.

3.5 Visualization of Transitions

The calculation of dEB(c1; c2) determines an energetically favourable model of
the transition from c1 to c2. The sequence of intermediate conformations is
passed to the RNA Movies visualization tool 13. The tool o�ers the function-
ality of a video player, presenting an animated graphics representation of the
transition. This serves as an additional means to check the plausibility of the
suggested switch by human expertise.

4 Applications

Space only allows a cursory discussion of results here. A summary of the
results obtained in 16 has been made available on the WWW via the paRNAss
URL 1. These include a case of a switching mRNA as well as a case where a
pseudoknot is involved.

4.1 Switches

The spliced leader RNA of Leptomonas collosoma is part of the RNA section
that is added to each mRNA of this species in a process called trans splicing.
Two separately transcribed RNA molecules are linked together in a way similar
to the connection of neighbouring exons. The structural transition of this
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sequence is analysed by LeCuyer 6. paRNAss clearly predicts the switching
structures shown in Figure 2. These are in good correspondence with the
published structures.

A well known mechanism in which alternative RNA structures are essential
is the regulation of gene expression by attenuation. For this process a leader
sequence called attenuator is required upstream of the coding region of an
RNA. This leader can be translated to a short peptide. Depending on whether
the leader peptide can be built completely or not, the regulated region will fold
into di�erent secondary structures. Full translation of the attenuator sequence
leads to formation of a terminator structure, which prevents further transcrip-
tion of the concerned DNA section. If the leader peptide stays un�nished, an
anti-terminator is formed and transcription can continue.

As one example of attenuation we examined the leader sequence of the
pheS-pheT operon of E. coli . The secondary structures of this RNA are anal-
ysed in depth in2. Application of paRNAss on the (shortened) leader sequence
gives a strong hint on the ability to switch. The prediction phase proposes two
foldings which have considerable similarity to those published by Fayat2. Espe-
cially the terminator is almost identical. Finally, the validation plot supports
these predictions.

4.2 Non-Switches

We evaluated paRNAss on several mRNAs as well on 20 random sequences
generated by ROSE17. In general, the distance plots for mRNA are comparable
to plots produced for random sequences. No switching is indicated in these
plots. As a typical example, we include the distance plot for an mRNA of
Zea mais in the online documentation.

4.3 Method Reliability

While evaluating paRNAss on a suite of about 40 test sequences, we ran into
one false negative and three false positives. The false negative was a sequence
from a virusoid, where a known case of a switch was not detected by paRNAss.
This was easily explained by Hypothesis 1 { the experimentally determined
structure is far from the energy minimum and is not detected by the RNA
folding program.

The (possibly) false positives are more interesting: The examination of a
coding sequence from Schistosoma mansoni led to an ambiguous plot which
made us explore a shortened version of the same string. A switch was clearly
indicated. The validation phase supported the proposed structures (see 1).
This indicates the possibility that the S. mansoni gene carries some function
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encoded in structure. While such is known for some viral genes, we are not
aware of any biological evidence in this respect with S. mansoni . The same ap-
plies for the �nding of a possible switch in a 5s rRNA from Neurospora crassa .
We also ran into one case of a random sequence where a switch was strongly
indicated. This observation may indicate that switches are not as exceptional
as assumed.

5 The Software

paRNAss was implemented by two successive Master's Theses: Rehmsmeier 18

provided a prototype proving the viability of the approach, while Haase16 com-
pleted the tool and worked out the applications. D. Evers integrated the RNA
Movies tool, and A. Sczyrba built the WWW interface, which was integrated
into BiBiServ, the Bielefeld Bioinformatics Server 1.

paRNAss is computationally expensive; the cost mostly comes from folding
the sample set of structures and from evaluating dEB . Folding algorithms have
a computational complexity of O(n3), where n is the sequence length. While
the heuristics for calculating a single energy barrier is in O(n2), the overall
e�ort for this phase depends on the sample size p and amounts to O(p2 � n2).
So both sample size and sequence length must be seen as limiting factors.
Typically you can draw a sample of 50 structures of about 150 residues and
process it in about 10 minutes of real time on an UltraSparc 1. However, we
see possibilities for signi�cant speed-up (cf. below).

6 Conclusion and Future Work

Our immediate goal is to apply paRNAss in situations where conformational
switching is suspected, but has not been proved yet. Once more experience has
been gained with paRNAss experiments, we may consider to further automate
the procedure.

One current limitation of the overall approach is computation time. It
should be possible to cut down the complexity of the structure comparison
phase. As both RNA folding and the calculation of energy barriers are based
on the same physical model, merging the two phases might lead to considerable
speedup. This is not trivial, as it requires a redesign of the folding program.

A second limitation today is that paRNAss generates only a rather weak
signal in the case where only a small part of the RNA molecule actually changes
shape (See the case of S. mansoni described above). To better detect such
cases, pairs of structures must be analysed with respect to both global and

Pacific Symposium on Biocomputing 4:126-137 (1999) 



local similarity and dissimilarity. Methods used in sequence comparison can
be generalized to this mode of structure comparison.
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