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ANALYSIS OF THE STABILIZING EFFECT OF ROM ON THE

GENETIC NETWORK CONTROLLING PLASMID

REPLICATION

1 Introduction

MCZ Laboratory, Department of Organismic and Evolutionary Biology, Harvard

University, 26 Oxford Street, Cambridge MA 02138 (USA) goss@mcz.harvard.edu
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Many systems of plasmid copy number control have been extensively studied,

because of the role of plasmids in the spread of antibiotic resistance and be-

cause of the experimental utility of plasmids in molecular biology and biotech-

nology .

A number of quantitative models of plasmid copy number control have

been published . Plasmid has been a particular focus for modeling

. replication is an attractive system to model because

the molecular basis for replication control is well-characterized, and because

most synthetic cloning vectors are derived from -like plasmids. Merlin

and Polisky give a review of quantitative models of . Ehrenberg

provides a detailed comparison of the models of Brenner and Tomizawa and

Brendel and Perelson , with a particular focus on the di�erences between

multiple step and single step inhibition reactions in replication control.

A stochastic model of plasmid replication is presented. It is implemented

by using UltraSAN, a simulation tool based on an extension of stochastic Petri

nets (SPNs). It allows an exploration of the variation in plasmid number per bac-

terium, which is not possible using a deterministic model. In particular, the rate

at which plasmid-free bacteria arise during bacterial division is explored in some

detail since spontaneous plasmid loss is a widely observed empirical phenomenon.

The rate of spontaneous plasmid loss provides an evolutionary explanation for the

maintainance of Rom protein. The presence of Rom acts to reduce variance in plas-

mid copy number, thereby reducing the rate of plasmid loss at bacterial division.

The ability of stochastic models to link biochemical function with evolutionary

considerations is discussed.
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Figure 1: SPN subnet plasmid replication.

The timing of replication is random , and, in the absence of evi-

dence to the contrary, segregation at bacterial division is assumed to be

random . Ignoring the e�ects of Colicin production, stability of -type

plasmids requires that the number of plasmids per bacterium is su�ciently

high to render the probability of one daughter cell not inheriting any copies

of the plasmid negligible. With 20 copies of a plasmid segregating randomly

at bacterial division, the probability one daughter cell inheriting zero plasmids

is less than 10 . However, the exact number of plasmids in each bacterium

prior to division will vary, both because of random segregation and because of

the random timing of plasmid replication events. Variance in plasmid number

per bacterium increases the probability of plasmid-free lineages .

We present a stochastic model of replication, based upon a de-

terministic model by Brendel and Perelson . With around 30 copies per

bacterium, the assumption of mass action required for a deterministic model

is not satis�ed, and a stochastic model provides a more precise representation
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of plasmid replication . A major advantage of this stochastic model is that it

rules the dynamics of the statistical distribution of the plasmid copy number

per bacterium, thus providing the possibility to compute the rate at which

plasmid-free lineages arise.

Rom is not an essential part of the control mechanism. Rom-minus

mutants of are observed to occur, and have increased copy number .

Increased plasmid copy number tends to increase the metabolic cost to the

host, but this is not a su�cient explanation for the maintainance of Rom pro-

tein, since changes in other parameter values could also lower mean plasmid

copy number. We present evidence that Rom has a role in canalizing mean

plasmid copy number, with wildtype plasmids having a lower variance in plas-

mid number than Rom-minus plasmids for a given mean, and thereby a lower

probability of loss due to random segregation.

We review briey the mechanism of replication following the nota-

tion of previous papers . Three di�erent plasmid products are involved in

the regulation of plasmid replication, RNA I and RNA II, and Rom protein.

RNA II ( ) is transcribed from free plasmid ( ) and remains bound to the

plasmid during transcription. Once RNA II is released, it is assumed to be de-

graded and plays no further role in the control of replication. RNA I ( ) and

Rom protein ( ) are also produced by free plasmid, but are assumed to dif-

fuse freely in the cytoplasm. While RNA II is between 110 and 360 nucleotides

long, free RNA I can hybridize with the plasmid-bound RNA II transcript

to form an unstable complex . RNA II transcripts that escape interaction

with RNA I and elongate past 360 nucleotides, , are either released with-

out replication or prime the plasmid DNA for replication, after which they are

released. Unstable complex can convert to a stable RNA I-RNA II complex

. The RNA I-RNA II complex dissociates from the plasmid DNA and is

degraded. Rom protein can bind to unstable complex to form an inter-

mediate complex which rapidly converts to stable complex . Overall,

the binding of RNA I molecules to short RNA II transcripts acts as a negative

feedback loop to prevent runaway replication of plasmids. Rom protein has a

role in reinforcing this negative feedback, but has no e�ect in the absence of

RNA I. The growth rate of bacteria is assumed to be constant, and the de-

crease in concentration of di�erent molecular species as the volume of the cell

increases is represented in the di�erential equations by , the rate of increase

of cytoplasmic volume.

SPNs are a formalism developed in the �eld of Computer Science for im-

plementing a subset of Markov processes, and have a standard graphical rep-

resentation . The validity of using SPNs to model the dynamics of molecular

interactions at low concentration was established previously . We used the
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software package named UltraSAN to analyze the models presented in this

paper .

The subnet representing the plasmid replication used in this paper is almost

identical to the one introduced previously except that an additional place

is introduced to track the total number of plasmids. Output measures

are de�ned to give the mean, variance and distribution of the total number of

plasmids, the number of free RNA I molecules and the number of free Rom

proteins. The results are reported at �xed intervals during each bacterial

generation. The distribution of the number of plasmids per bacterium imme-

diately before division can be used to estimate the probability of a plasmid-free

daughter cell arising. Time-averaged results are also reported, where the av-

erage of mean copy number over one generation represents the average copy

number that would be observed in an asynchronous population of bacteria.

Rom-minus mutants are represented by a subnet where the places and

and the transitions , , , , and are removed.

Bacteria are assumed to grow exponentially with a �xed doubling time ,

set at either 80 minutes or 30 minutes. Exponential growth is approximated

in the model by dividing each generation into 100 equal time steps. Increas-

ing the number of time steps does not a�ect the results (data not shown).

A deterministic transition is used to increment a time counter at �xed time

intervals. The rate constants of the two second-order reactions are functions

of the time counter. If is the value of the time counter at time , and (0)

is the initial reaction rate, the time dependent rate constant ( ) is given by

( ) = (0) .

When the time counter reaches 100, bacterial division is initiated. By

assumption, division occurs instantaneously. Division is implemented in the

model by an instantaneous transition which �res once reaches 100, and re-

sets to zero (in e�ect resetting the volume of the daughter cells to the initial

volume (0)). The other functions which need to be performed at bacterial

division, dividing the number of plasmids, RNA I molecules and Rom pro-

teins, are performed in a second subnet linked to the �rst one by the composed

model editor. Details of the implementation will be presented elsewhere. The

model used to produce the results of this paper can be downloaded over the

net ( ).

Plasmid-free lineages are de�ned as bacteria which have zero plasmids.

The output measures de�ned above do not distinguish between lineages still

containing plasmids and plasmid-free lineages. In order to compare means

Pacific Symposium on Biocomputing 4:65-76 (1999) 
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and variances across simulations, it is useful to report means and variances

as conditional on the lineage still containing plasmids. Given the number of

runs, , the number of plasmid-free lineages, , and the mean and vari-

ance of the number of plasmids, X and s , the conditional means and vari-

ances, X and s are calculated as follows: X = X and s =

( 1)s + (X ) (X ) . The conditional means and vari-

ances of the numbers of RNA I molecules and Rom proteins are calculated

similarly, with the additional assumption that the number of RNA I molecules

and Rom proteins in plasmid-free lineages is zero.

Immediately before bacterial division, the distribution of the number of

plasmids per bacterium is approximately normal. Simulations report the mean

and variance of this distribution. In each bacterium the plasmids are segregated

randomly between the two daughter cells. Given plasmids in a bacterium,

the probability of one daughter cell inheriting zero plasmids is 2 0 5 = 0 5 .

If plasmids are normally distributed with an observed mean X and vari-

ance s , then the probability of at least one plasmid-free lineage after bacterial

division can be approximated by integrating the product of the probability

density function and the probability of a plasmid-free lineage for a given .

The integral is taken from 1 to in�nity, because we are interested in the prob-

ability of a plasmid-free lineage conditional on the parent lineage containing

at least one plasmid. This integral is

(plasmid free lineage) = 0 5 ( ) d (1)

where ( ) is the probability distribution function for a normal distribu-

tion with mean and variance . Eq. 1 can be integrated numerically.

Plasmid number per bacterium is a discrete rather than continuous vari-

able, so the approximation of the plasmid distribution by a normal distribution

may not be justi�ed. When the probability of plasmid-free lineages arising is

calculated as the sum over a discrete distribution, the results are very similar

to the results given by the integral in Eq. 1 (data not shown). The integral is

used rather than the discrete sum because it is easier to calculate.

To simulate the establishment of a plasmid which has newly invaded a bac-

terium, stochastic simulation runs are started with a single plasmid, and no

RNA I or Rom protein. The distribution of plasmid number per bacterium

is measured every 20 minutes when the generation time is 80 minutes, and
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Figure 2: Distribution of plasmid number during the �rst 30 minute generation.

Table 1: Within generation trajectory of plasmid mean (SD), equal or binomial segregation.

Wildtype plasmid number from generation 10, 80 minute generation time, based on 1000

runs of simulation.

every 7.5 minutes when the generation time is 30 minutes. The change in the

distribution of plasmid number through the �rst generation is shown in Fig. 3.

The dynamics of plasmid replication is studied under the assumptions of

equal segregation or binomial segregation of plasmids at bacterial division.

Binomial segregation represents an additional source of variance, but is as-

sumed to be the actual mode of segregation for . Standard deviation

of copy numbers is decreased under the assumption of equal segregation, al-

though mean copy number is indistinguishable under the two assumptions

( = 0 55 0 5). While standard deviation of plasmid number is decreased

under equal segregation, especially immediately after bacterial division, it in-

creases more during each generation (Table 1). The rest of the results reported

in this paper use the assumption of binomial segregation.

By generation 10 the system has reached a periodic steady state, where
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Generation Wildtype Rom-minus

N Mean N Mean

1 0 4.1 0 4.2

2 45 10.1 51 11.8

3 52 14.6 56 19.1

4 54 17.3 56 24.7

5 55 18.8 56 28.2

10 55 20.7 56 33.7

Table 2: Loss of plasmids and average plasmid number (30 minute generation time). N ,

observed frequency of plasmid-free lineages in 1000 runs of simulation. Plasmid mean is

time-averaged over each generation, conditional on presence of plasmids.

mean plasmid number doubles during each bacterial generation before being

divided between the two daughter cells at bacterial division. The probability

of loss of plasmids is very low once plasmid copy number has reached periodic

steady state. Even with a 30 minute generation time, plasmid loss is only

observed in simulations in the �rst few generations after a plasmid invades a

bacterium (Table 2). When bacteria are started with 100 plasmids, no cases

of plasmid loss are seen. Given the mean and variance of plasmid number

immediately before bacterial division, it is possible to estimate the probability

of plasmid loss per bacterium per generation using Eq. (1). Table 3 gives

the steady state mean and variance of plasmid number immediately before

bacterial division, as well as the predicted rate of plasmid loss.

To test the e�ect of Rom protein on the rate of plasmid loss, simulations

are run for a Rom-minus plasmid with RNA II synthesis rate, decreased

from 0.25 min to 0.18 min . Given a 30 minute bacterial generation time,

mean plasmid number is 21.3 for this modi�ed Rom-minus plasmid (condi-

tional on the presence of plasmids), compared to 20.9 for a wildtype plasmid.

Simulations are run starting with 1 or 10 plasmids per bacterium, where a

bacterium started with 10 plasmids is close to steady state. When the simu-

lations are started with 1 plasmid per bacterium, 58 plasmid-free lineages are

observed for wildtype plasmids, and 113 plasmid-free lineages for Rom-minus

plasmids ( 0 001). When bacteria are started with 10 plasmids, the rate

of plasmid loss is very low. In order to estimate the rate of plasmid loss more

precisely, the simulation is run 50,000 times. After 10 generations, 6 plasmid-

free lineages are observed for the Rom-minus plasmid, a rate plasmid loss of

1 2 10 per bacterium per generation. Only one of the two daughter cells is

observed, so the expected value for the true rate of loss of plasmids is 2 4 10

per bacterium per generation.
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Generation Time Mean (SD) Pr(loss) Pr(loss / no variance)

80 minute 38.3 (5.8) 1 9 10 5 9 10

30 minute 29.1 (5.7) 7 7 10 3 5 10

80 minute 68.8 (11.5) 5 0 10 3 9 10

30 minute 47.3 (8.8) 2 6 10 1 2 10

Parameter (min ) Mean (SD) P

WT 28.8 (6.0) 1 7 10

= 0 18 28.5 (6.9) 1 1 10

= 7 5 28.9 (6.5) 4 4 10

= 8 0 28.6 (6.9) 1 1 10

= 2 35 29.0 (7.1) 1 2 10

= 9 5 28.9 (6.5) 4 2 10

= 0 21 28.9 (6.8) 6 9 10

( ) = 0 45 29.1 (6.5) 4 1 10

= 13 0 28.7 (6.4) 3 8 10

= 150 29.2 (6.5) 3 8 10

Table 3: Predicted probability of plasmid loss in steady state. Plasmid mean (standard

deviation) immediately before bacterial division at end of generation 10, conditional on

presence of plasmids, based on 1000 runs of simulation. Pr(loss), predicted probability of

plasmid loss for given mean and standard deviation, from Eq. 1. Pr(loss / no variance),

predicted probability of plasmid loss for given mean and zero variance, as for a deterministic

model.

Table 4: Predicted probability of plasmid-loss for wildtype and modi�ed Rom-minus plas-

mids. Mean and standard deviation of plasmid number immediately before bacterial division

at generation 10, conditional on presence of plasmids. P , predicted probability of plasmid

loss from Eq. 1.

Given the mean and standard deviation of plasmid number immediately

before division, probability of plasmid loss can be estimated using Eq. 1. Mod-

i�ed Rom-minus plasmid strains are de�ned by varying individual parameters

so that mean plasmid number is equal to wildtype mean plasmid number. Nine

parameters are su�ciently correlated with plasmid number to allow modi�ed

Rom-minus strains to be de�ned. Table 4 gives the predicted probability of loss

for a wildtype plasmid and for the nine modi�ed Rom-minus plasmid strains.

For each modi�ed Rom-minus plasmid, standard deviation of plasmid number

is higher than for the wildtype plasmid, even though mean plasmid numbers

are very close. The predicted rate of plasmid loss is between 2-fold and 7-fold

higher for the modi�ed Rom-minus plasmids than for the wildtype plasmid.

Pacific Symposium on Biocomputing 4:65-76 (1999) 
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Given that the plasmid replication system has been modeled determinis-

tically several times , what do we learn from a stochastic model?

We argued that a stochastic model has a stronger theoretical justi�cation than

a deterministic model given that mean plasmid number per bacterium is

small. The mean number of plasmids, RNA I transcripts and Rom proteins is

very similar in both the deterministic model of Brendel and Perelson and the

stochastic model presented here (data not shown). Put another way, the plas-

mid copy number of the deterministic model provides a good approximation

to the time-averaged mean copy number of the stochastic model, even though

the assumption of mass action is not met.

One important practical di�erence between the models is that the stochas-

tic model rules the dynamics of the distribution of probability of plasmid num-

ber per bacterium, while the deterministic model rules the dynamics of a single

state. It is still di�cult to measure the distribution of plasmids in individual

bacteria directly. However, the variation in plasmid number a�ects the proba-

bility of plasmid loss, and it may be possible to estimate the rate of plasmid-loss

empirically. The probability of plasmid loss, which depends on the distribu-

tion of plasmid number immediately before bacterial division, is four orders

of magnitude higher for the stochastic model than for the deterministic model

relying only on a stochastic mechanism of plasmid segregation.

Boe discuss the rate at which plasmid-free lineages spread through

the population, based on a given frequency of plasmid loss and various di�er-

ences in growth rate between bacteria with or without plasmids. However, we

do not need a theoretical treatment to convince us of the signi�cance of the dif-

ferences between the deterministic and stochastic models if we convert these

probabilities into expected waiting times until a plasmid-free lineage arises.

Let us assume 80 minute bacterial generation time, and a 10ml test tube with

10 bacteria per ml. If the probability of loss is 4 5 10 , as for the deter-

ministic model, we expect 0.045 plasmid-free lineages to arise per generation.

This translates to 1 plasmid-free lineage per 22 generations, or 29.6 hours. If

the probability of loss is 1 9 10 , as for the stochastic model, we expect

190 plasmid-free lineages to arise per generation. It is di�cult to test these

numbers directly for , because Colicin production would kill plasmid-

free bacteria. However, stochastic models of replication control for related

plasmids which lack Colicin genes would be very interesting, where the rate of

plasmid loss could be empirically observed and compared to the predictions of

the model.

What are the e�ects of structural changes in the replication control mech-

Pacific Symposium on Biocomputing 4:65-76 (1999) 
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anism? Rom-minus mutants are observed experimentally, and have approxi-

mately double the plasmid copy number of wildtype plasmids. However, Rom

is not necessary for plasmid replication control, which raises the question of

why it is maintained. The comparison of results for a wildtype plasmid with

a modi�ed Rom-minus plasmid conducted for bacteria with 30 minute gener-

ation time in order to increase the rate of plasmid loss to an observable level,

although this rate is still extremely low. A modi�ed Rom-minus plasmid is

de�ned where the rate of RNA II synthesis has been reduced from 0.25 min

to 0.18 min in the Rom-minus strain, so that mean plasmid number is equal

to that for a wildtype. This removes any potential metabolic cost to the host

of increased plasmid numbers in the Rom-minus strain, and allows for direct

comparison of the rate of plasmid loss between the two strains. Rom is as-

sumed to have no function other than its role in plasmid replication

control.

Simulations are started with 1 or 10 plasmids, representing plasmid estab-

lishment or the periodic steady state. Signi�cantly more plasmid-free lineages

are observed for the modi�ed Rom-minus plasmid than for the wildtype during

the establishment phase of plasmid replication, but there may be some bias

in the pattern of plasmid loss in the �rst few generations. Bacterial lineages

started with 10 plasmids should not be subject to this bias. However, the

observed rate of plasmid loss is too low to show signi�cant di�erences between

the plasmid strains, even with 50,000 runs of simulation (which takes 2.25 days

for the Rom-minus plasmid on a Pentium 166).

Table 4 gives the mean plasmid number immediately before bacterial di-

vision at the end of generation 10 for wildtype and nine modi�ed Rom-minus

plasmid strains. Plasmid mean and variance can be used to predict the prob-

ability of plasmid loss using Eq. 1. In all cases, the modi�ed Rom-minus

plasmids are lost at a higher rate than wildtype plasmids, even though there

is no di�erence in mean plasmid number. Even though the rate of plasmid

loss is very low, the increased replication rate of plasmid-free bacteria means

that any di�erence in the rate of plasmid loss in individual bacterial lineages

may be su�cient to alter the overall fate of plasmids in a bacterial popula-

tion . Thus, the lower rate of plasmid loss when Rom is present provides an

evolutionary explanation for the maintainance of Rom protein.

Bacterial lineages without plasmids can replicate more rapidly that bac-

terial lineages with plasmids . Thus, we would expect that the repli-

cation system functions to limit the rate of plasmid loss. The rate of plasmid

loss depends primarily on mean plasmid number per bacterium, but is also

a�ected by the variation in plasmid number between individual bacteria. Ar-

guments based on metabolic cost suggest that increased plasmid copy number

Pacific Symposium on Biocomputing 4:65-76 (1999) 
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slows host growth. Plasmid stability involves a trade-o� between the proba-

bility of plasmid loss and the metabolic cost to the host. A mechanism which

reduces variance in copy number without increasing mean plasmid number,

in e�ect canalizing plasmid number against stochastic uctuations, would in-

crease plasmid stability without increasing the metabolic cost to the host. The

results presented here suggest that Rom functions in this manner. Rom-minus

plasmids have higher mean plasmid number than do wildtype plasmids, but

altering any individual parameter in a modi�ed Rom-minus plasmid, so as to

equalize mean plasmid number, causes an increase in the standard deviation of

plasmid number and an increased rate of plasmid loss compared to a wildtype.

It is impossible to know whether Rom was originally selected for this role in

canalizing plasmid number, but these results suggest that Rom is selectively

maintained for its canalizing function.
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