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The detection of motifs within and among families of protein sequences can provide useful
information regarding the function, structure and evolution of a protein.  With the increasing
number of computer programs available for motif detection, a comparative evaluation of the
programs from a biological perspective is warranted.  This study uses a set of 20 reverse
transcriptase (RT) protein sequences to test and compare the ability of 7 different
computational methods to locate the ordered-series-of-motifs that are well characterized in
the RT sequences.  The results provide insight to biologists as to the usage, value, and
reliability of the numerous methods available.

1   Introduction

Early work in protein pattern recognition suggested that islands of amino acids may
be conserved in the same order of a given protein family. [M.O. Dayhoff et al.,
1983]  Today, a region of amino acids that is conserved throughout the evolution of
a protein family is called a motif.  Motifs can be present among protein sequences
either as a set of unique motifs or as a set of repeated motifs. When motifs occur in
a specific order among a set of sequences, they can be thought of as an ordered-
series-of-motifs (OSM), [M.A. McClure, 1991] or protein signature.  The
designation of protein signature refers to the OSM that characterizes a particular
family of proteins. 

There are two aspects of motif detection worth clarifiying.  The first is the
initial recognition of a unique motif pattern, or OSM, that defines a protein family.
The second is the use of known motifs to identify potential functions in
uncharacterized sequences.  We are interested in new computational methods for the
initial inference of an OSM.  Our approach to motif detection is an attempt to find
the OSM among highly divergent sequences in order to provide insight into the
function, structure and evolution of the protein family.

OSMs are selectively constrained throughout the evolution of a protein family
as a result of their importance to function and structure.  Thus, an OSM can be
defined in more than one biologically meaningful way.  A functional OSM can be
described by the residues of a catalytic site, e.g., the Asp-Asp (DD) motif of the
reverse transcriptase (RT) protein sequence.  An OSM may also define structural
patterns, e.g., α-helices or β-sheets.  A functional OSM can be superimposed on
structural domains; e.g., the RT OSM location within the fingers, palm and thumb
domains of the RT (figure 1). [L.A. Kohlstaedt et al., 1992]  Regardless of how the
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OSM is defined, function and structure is maintained only when all motifs of the
OSM are present and in the appropriate order relative to one another .  

In retroviruses, the RT constitutes one functional domain of the RNA-dependent
DNA-polymerase (RDDP).  The other domain is the ribonuclease-H (figure 1).
Primary sequence analysis shows that all known RT sequences contain an ordered
series of six characteristic motifs (figure 2). [M.A. McClure, 1993]  The crystal
structure of the RT reveals the location of the structural folds confirming the
functional importance of the OSM. [L.A. Kohlstaedt et al., 1992]  The individual
motifs of the OSM have varying levels of conservation.  The order of conservation
for the motifs, from high to low, is as follows: IV > II > VI > III > I or V.  Since
the OSM in the RT protein is well-characterized, the RT sequences can be used to
evaluate the performance of motif detection methods.

Reverse Transcriptase                Ribonuclease H 

fingers palm fingers palm thumb connection 

K       D          P    DD  KG                                           
1         2          3    4     5  6 1    2    3        4

D   E   D NX  D3

Figure 1. The RNA-dependent DNA polymerase (RDDP) is comprised of two functional domains, RT
and RH.  The most highly conserved residues of the OSM of the RT functional domain [M.A. McClure,
1993] are placed within the structural domains (fingers, palm, fingers, palm, thumb, and connection)
identified by the HIV-1 RT crystal. [L.A. Kohlstaedt et al., 1992]  The most highly conserved residues
of the ordered-series-of-motifs of the RH domain [M.A. McClure, 1991] are placed within the two RH
structural domains based upon comparison of the HIV-I and E. Coli RH crystal structures. [J.F.I.
Davies et al., 1991]

With the increase in available sequence data, there has been an increase in
computer programs created to define new motifs.  Computational methods that
attempt to identify an OSM without regard to the intervening regions are referred to
as local alignment methods.  Methods that attempt to align the entire length of a set
of sequences are referred to as global alignment methods. A previous study of global
and local methods revealed that global methods outperform local methods in
identifying motifs. [M.A. McClure et al., 1994]  Another comparative study of
global methods and HMM approaches concluded that HMMs were as good as or
better at motif detection than classical dynamic programming methods.  Although
HMMs display improved performance, they are not 100% accurate. [M.A. McClure
and R. Raman, 1995; M.A. McClure, 1996]  With the increase in new
computational methods for local alignment, a current comparative analysis is
warranted.  This study compares recently developed local alignment methods and the
HMM approach.
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From a biologist’s perspective, choosing a computational motif-detection
method is not simple, especially with the many different methods available.  Once a
method has been chosen, how does one know what parameters should be altered to
produce optimal results?  Comparative analyses of computational methods assist
biologists in choosing and using the best method for their studies.  

         I        II         III         IV         V       VI  

HT13  pvkKa--   t-IDLkdaf   -LPQG-fk   qYMDDIll   shGL--   kFLGqii
NVV0  ikkK---   tiLDIgday   -LPQG-wk   -YMDDIyi   qyGFM-   kWLGfel
SFV1  pvpKp--   ttLDLtngf   -LPQG-fl   aYVDDIyi   naGYVv   eFLGfni
HERVC pvpKp--   tcLDLkdaf   -LPQR-fk   qYVDDLll   tvGIRc   cYLGfti
GMG1  mvrKa--   tkVDVraaf   -CPFG-la   aYLDDIli   --GLN-   kYLGfiv
GM17  v-pKkqd   ttIDLakgf   -MPFG-lk   vYLDDIiv   --NLK-   tFLG-hv
MDG1  lvpKksl   scLDLmsgf   -LPFG-lk   lYMDDLvv   --NLK-   tYLG-hk
MORG  vvrKk--   ttMDLqngf   -APFG-fk   lYMDDIiv   --GLK-   hFLG-hi
CAT1  lvdKpkd   eqMDVktaf   kSLYG-lk   lYVDDMli   --EMK-   rILGidi
CMC1  titKrpe   hqMDVktaf   kAIYG-lk   lYVDDVvi   ---KR-   hFIGiri
CST4  ftkKrng   t-LDInhaf   kALYG-lk   vYVDDCvi   inKLK-   dILGmdl
C1095 fnrKrdg   tqLDIssay   kSLYG-lk   lFVDDMil   itTLKk   dILGlei
NDM0  mihKt--   afLDIqqaf   gVPQGsvl   tYADDTav   tsGL--   kYLGitl
NL13  lipKp--   s-IDAekaf   gTRQGcpl   lFADDMiv   vsGYK-   kYLGiql
NLOA  fipKa--   afLDIegaf   gCPQGgvl   gYADDIvi   evGLN-   kYLGvi-
NTC0  vlrKp--   amLDGrnay   gVRQGmvl   aYLDDVtv   alGIE-   rVLGagv
ICD0  eipKp--   vdIDIk-gf   gTPQGgil   rYADDFki   rlDLDi   dFLGfkl
IAG0  fkkKt--   ieGDIks-f   gVPQGgii   rYADDWlv   elKITl   -FLGvnl
ICS0  wipKp--   ldADIsk-c   gTPQGgvi   rYADDFvi   emGLEl   nFLGfnv
IPL0  yipKs--   leADIr-gf   gVPQGgpi   rYADDFvv   srGLVl   dFVGfnf

Figure 2.  The six motifs of the RT OSM are indicated by roman numerals (I-VI). [M.A. McClure,
1993]  The bold and capitalized letters represent the core amino acids of each motif used to score the
programs in this study.  Dashes represent gaps in the alignment.  Abbreviations on the left side bar are
defined in materials and methods.

2.  Materials and Methods

All analyses were performed on a Sun SPARCstation Ultra 1 running SUN OS 5.6.

2.1  Biological data

The RT test sequences were obtained from GenBank, with the exception of one
sequence (C1095) from the Saccharomyces Genome Database.  Initially, more than
500 RT sequences were retrieved from the databases.  Using a program that generates
pairwise similarity scores based on the Needleman-Wunsch algorithm, [S.B.
Needleman and C.D. Wunsch, 1970] and CLUSTER, an in-house hierarchical
clustering method, 20 representative RT sequences were selected from this
collection. The pairwise sequence identity among the test set of sequences ranges
from 7-48%.  Based on the conservative substitution of amino acids, the sequence
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similarity is also low. The dataset includes an even distribution of RT sequences
from the following groups: retroviruses (HT13, NVV0, SFV1, HERVC); gypsy
retrotransposons (GMG1, GM17, MDG1, MORG); copia retrotransposons (CAT1,
CMC1, CST4, C1095); non-long terminal repeat retroposons (NDM0, NL13,
NLOA, NTC0); and retrointrons (ICD0, IAG0, ICS0, IPL0).  GenBank accession
numbers are L36905, M60610, X54482, M10976, M77661, X01472, X59545,
Z27119, X53975, X02599, M94164, M22874, L19088, X60177, M62862,
X98606, U41288, X71404, and Z48620.

2.2  Motif-identification programs

Seven computer programs were included in this study (table 1).  With the exception
of SAM, all of these programs are local alignment methods that are not search
engines for motif databases.  Although SAM is a global alignment method, it is
included in this study because it was found to perform at least as well as global
methods that are better than local methods. [M.A. McClure et al., 1994]  Brief
descriptions of each program are provided below.

BLOCKMAKER, [S. Henikoff et al., 1995] the downloaded version,
implements the Motifj algorithm. [R.F. Smith and T.F. Smith, 1990]  Motifj
searches the sequences for conserved triplets of amino acids that are separated by a
user-specified length.  If the triplet is found in enough sequences, an alignment is
created that maximizes the block score.  From the best alignments, the triplets are
merged and the alignment is extended to get the highest score for the blocks.      

ITERALIGN uses the symmetric-iterative protocol. [L. Brocchieri and S.
Karlin, 1998]  It starts by aligning the sequences according to the significant
segment pair alignment method.  Improved sequences and, eventually, consensus
sequences are generated until they converge.  Blocks are derived from the alignment
of the consensus sequences and are improved by displacement of individual
sequences.  The blocks are defined by a consensus residue and conservation index. 

MATCHBOX implements a scanning algorithm. [E. Depiereux et al., 1997]  It
begins the search using a 9-residue running window that moves across the sequences
in search of a match.  A match is based on the number of identical amino acids and
the sum of the distances observed between matched residues.  A database of
matches/boxes is created and boxes are deleted based on their length or selected based
on the residual length and gap cost ratio. 

The PIMA (Pattern-Induced Multi-sequence Alignment) program starts by
constructing a binary tree based on pairwise similarity scores. [R.F. Smith and T.F.
Smith, 1992]  The tree is reduced to one pattern by replacing nodes with a common
pattern node that is generated by an alignment based on the Smith-Waterman (SW)
algorithm. [T.F. Smith and M.S. Waterman, 1981]  Common patterns are
constructed from the alignment using amino acid class-covering hierarchy patterns. 
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The PROBE program implements the SW algorithm that performs transitive
searches to find regions of sequence similarity. [A.F. Neuwald et al., 1997]  The
sequences collected from this search are purged to eliminate unequal representation of
the data and then aligned co-linearly using the Gibbs sampling algorithm. [C.E.
Lawrence et al., 1993; A.F. Neuwald et al., 1995]  The Gibbs sampling algorithm
starts at a random position for all of the sequences except one.  The excluded
sequence is aligned to the others.  This process is reiterated until the information
content score is maximized.  After Gibbs sampling, a genetic algorithm is used to
recombine a randomly selected alignment and choose the best alignment produced.
This alignment is used to search for more sequences, which are included in another
iteration starting with the Gibbs sampling step, until no more new sequences are
found. 

Both MEME (Multiple Expectation Maximization for Motif Elicitation) and
SAM (Sequence Alignment and Modeling) locate motifs by estimating the
parameters for a model that maximizes the likelihood of the data.  MEME starts by
breaking up the data into overlapping sequences of specified length. [T.L. Bailey and
C. Elkan, 1994]  The MM (Mixture Model) algorithm creates a finite mixture
model of the new dataset that consists of two components, the motifs and the motif-
background probabilities.  The EM (Expectation Maximization) algorithm estimates
and maximizes the expected log likelihood value of the model parameters. 

The SAM program is a linear HMM that implements the Baum-Welch
algorithm. [A. Krogh et al., 1994; R. Hughey and A. Krogh, 1996]  The estimated
parameters are the transition and observation probabilities.  Once the model
converges, a multiple alignment can be created and motifs detected.

Several programs are not included in this study for a variety of reasons.  In a
previous study, MACAW [G.D. Schuler et al., 1991] and PRALIGN [M.S.
Waterman and R. Jones, 1990] were found to give sub-optimal results. [M.A.
McClure et al., 1994]  MOTIF [H.O. Smith et al., 1990] was not included because
it is only available for DOS and a modified version, Motifj, is implemented in the
BLOCKMAKER program.  The FILTER program was not suitable for this study
due to a maximum sequence limit of 16. [M. Vingron and P. Argos, 1990; M.
Vingron and P. Argos, 1991]  PRATT was not included because detected motifs are
based on PROSITE patterns. [I. Jonassen et al., 1995; A. Brazma et al., 1996]  The
EMOTIF program did not suit this study because it requires the input sequences to
be aligned. [C.G. Nevill-Manning et al., 1997]  The TEIRESIAS program is not
readily available. [I. Rigoutsos and A. Floratos, 1998]  Initially, the GIBBS
program was included.  However, our analysis of GIBBS clearly indicates that the
authors’ most recent program, PROBE, performs better. 

All programs were initially run at the default parameter settings to establish
baseline results.  Range studies for user-specified parameter options were conducted
for all methods analyzed.  Parameters were changed according to the description of
their function and default values.  A range of values for each parameter was chosen
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to determine the effects on motif detection.  The best results for each program were
determined by a motif-scoring scheme.

2.3  Motif Scoring

Program performance was assessed by manually scoring the detected motifs.
Individual program scores consist of six values, one for each motif of the OSM.
The value for each motif is equal to the number of sequences correctly identified,
with the highest score being the number of sequences (20) used to test the programs.
The correct identification of a motif is based on the residues that represent the motifs
(figure 2).

3.  Results

The best results from these studies are presented in table 2. Of all the programs
evaluated, ITERALIGN, MEME, PROBE, and SAM were the only ones that
detected the entire OSM (figure 2).  The highly conserved motif IV was the only
pattern detected to some degree by all methods.  The degree to which other motifs
could be detected varied from method to method. 

The webserver version of BLOCKMAKER implements both the Motifj and
Gibbs sampling algorithms, without the option of changing parameters.  The
results for either algorithm are not any better than the downloaded version of Motifj
with parameter changes.  The best run of Motifj only detects the two most highly
conserved motifs (figure 2; II and IV), with a high score of 19 for motif IV.  The
ITERALIGN program finds the entire OSM with motif VI (figure 2) having the
highest occurrence of detection at 14 sequences.  Parameter changes are not available
for the webserver version of MATCHBOX. The only result obtained from this
program is the detection of the most conserved motif IV in all 20 sequences.  The
highest scores (20) for MEME are for the two most conserved motifs (figure 2; II
and IV).  MEME also reports high scores for motifs I, III, and VI.  PIMA detects all
of the motifs except the highly divergent motif V.  Motifs II and IV are detected in
all 20 sequences while motif III is detected as two different unaligned subsets.  The
SAM method locates the entire OSM.  All motifs, except motif II with a score of
15, are detected as unaligned subsets. 

PROBE has the highest occurrence of detection for the entire OSM.  These
results were obtained after running the program several times under the default
parameters.  Differences in the results of these runs are due to different random seeds.
The best random seed runs find the four most conserved motifs, II, III, IV, and VI,
for all 20 sequences.  Motif I, a single residue motif, was found in 18 out of 20
sequences.  In two of the copia elements (figure 2; CAT1 and CMC1), the lysine
residues were not correctly aligned.  The highly divergent motif, V, was correctly  
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Table 1: Computational Motif-Detection Programs
PROGRAM ALGORITHMa MATRIX INDEL RUN USER SPECIFICATIONSd

PENALTYc TIME (# MOTIFS) (WIDTH) (# SEQUENCES)
BLOCKMAKER Motifj PAM 250       none    ~1m N N            Ne
ITERALIGN SI PAM 250       C     ~1h40m N Y            Y
MATCHBOX Scanning BLOSUM 62       none     ~45m N N            Ni
MEME MM/EM PAM 250       none     ~2m Y Y            Y
PIMA SW AACHb       I + E     ~2m N N            Ni
PROBE SW+G+GA PAM 250       I + E     ~2h30m N N            Y
SAM BW none       none ~2h20m N N             Ni
aAlgorithms are: SI = Symmetric-Iterative protocol; MM = Mixture Model that uses (EM) Expectation Maximization; SW = Smith-
Waterman; G = Gibbs Sampling;  GA = Genetic Algorithm; and BW = Baum Welch.  bAACH = Amino Acid Cluster Hierarchy
(patgen, class 1; and class 2).  cThe indel penalties are: C = constant and I + E = initial + extension.  d# MOTIFS = number of motifs to
be detected; WIDTH = width of motifs to be detected; # SEQUENCES = number of sequences that contain the motif; N = user cannot
specify; Ne=user cannot specify and program excludes sequences; Ni = user cannot specify, but program automatically includes all
sequences; and Y = user can specify, but it is not required.

Table 2:  Motif Scores  and Parameter Options
PROGRAM I(1) II(3) III(4) IV(5) V(3) VI(3) PARAMETERS
BLOCKMAKER 0 18 0 19 0 0 run type=1; sign=5; dist=5a (5-30)
ITERALIGN 10 9 8 13 12 14 ltw=0.99b (0.0-0.99)
MATCHBOX 0 0 0 20 0 0 default on webserverc

MEME 16 20 19 20 10 17 mod oops; nmotifs=10; maxw=10d

PIMA 18 20 8+12 20 0 15 default with class 2 matrix
PROBE 18 20 20 20 14 20 S=500e

SAM 10+2 15 8+5+3+2 10+3+2 9+2 6+2+2+2 iw=2; FIMs @  10,20,30,40,50f

Roman numerals indicate motifs and values in parenthesis indicate number of amino acids scored for in each motif.  Values in the
columns indicate the number of sequences in which the motif was correctly identified.  Some methods find correct matches in more
than one subset of the data without correct alignment of these subsets to one another, indicated by more than one result per motif.
The parameter column indicates the changes which gave the best results.  Values in parenthesis in this column indicate the range
over which a parameter was tested.  arun type = 1 is non-iterative mode; sign = significance level; and dist = search width.  bltw =
weight assigned to lower threshold hits.  cno parameter changes available on the webserver.  dmod oops = motif distribution equals
one occurrence per sequence; nmotifs = number of motifs to find; maxw = maximum motif width to be detected. eS = level at which
to purge similar sequences.  fiw = internal_weight; FIMs = free insertion modules inserted at these positions; other parameters were
changed according to (M.A. McClure and R. Raman, 1995, M.A. McClure, 1996).
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identified in 14 out of 20 sequences.   This motif was not correctly identified in any
of the copia sequences and two non-long terminal repeat elements.  Nonetheless,
this study clearly indicates that the PROBE program outperforms all other methods
(table 2).

Another strength of PROBE is that the results are reported as collinear blocks
of motifs.  Since collinearity is definitive of an OSM and block format is readily
analyzed , this makes the result format of PROBE highly efficient.  Other methods,
such as BLOCKMAKER, MATCHBOX, MEME also display the results in a block
format.  However, MEME has a tendency to report motifs regardless of their
position in the sequence.  This is useful when looking for repetitive motifs
throughout a set of sequences, but it does not maintain the collinearity of an OSM.
Collinearity of BLOCKMAKER and MATCHBOX cannot be determined since the
entire OSM was not detected.  Methods, such as ITERALIGN, PIMA, and SAM
display the results as an alignment of the data set.  The alignments are collinear, but
difficult to analyze.  The motifs of the ITERALIGN alignment are difficult to score
because the program allows gaps and insertions within the motif.  PIMA reports
motifs as a consensus sequence using 60 symbols that represent the different types
of substitutions per position.  This is difficult to analyze without a symbol legend
and an alignment of the sequences to the consensus sequence.  Since SAM is not
meant for local alignment, it requires much effort to search the entire global
alignment for the regions of aligned motifs.

4.  Discussion and Future Studies

4.1  Discussion

The purpose of this study is to find the most reliable method of motif detection
currently available.  Motif-detection programs are sensitive to the degree of sequence
similarity among the analyzed data.  A program may be robust for analysis of
similar sequences, but inadequate for a highly divergent set of sequences.  Methods
that are able to identify motifs among highly divergent sequences are more reliable
than those methods that cannot.

While all programs analyzed were able to detect the most highly conserved
motif IV, four of the methods (ITERALIGN, MEME, SAM, and PROBE) were able
to detect the entire OSM.  All other methods (BLOCKMAKER, MATCHBOX, and
PIMA) were not able to identify motif V because it is one of the most divergent
motifs. This indicates that although conserved motifs are easily detected, only the
most robust methods will be able to detect an entire OSM that also contains
divergent motifs.  These results demonstrate that motif-detection programs are
sensitive to the degree of sequence similarity.
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Of all methods evaluated, PROBE performed the best at detecting the OSM in
the highly divergent RT sequences.  The PROBE program correctly located the four
most conserved motifs and was able to detect the two divergent motifs with
considerable accuracy.  The error in detecting motif I for two sequences is surprising,
because the two correct residues are only out of column register by 1 and 2
positions, respectively.  PROBE is a robust method for detecting an OSM even
without making any parameter changes.   This is because it is designed to locate
motifs as they are found in an OSM, collinearly among a set of sequences.   In this
study, PROBE detected more than the six collinear motifs of the OSM.  This is not
an inaccuracy of the method, but a display of PROBE’s superior performance.  The
additional motifs detected are actually recognized sub-motifs in the RT sequences.
[M.A. McClure, 1993]  PROBE detects both motifs and sub-motifs without any
specification from the user.  This is useful when the number of motifs is not
known.  MEME, on the other hand, requires the number of motifs to be specified.
MEME performance is improved when the specified number of motifs is greater
than the actual number of motifs.  This generates some sub-motif detection, but not
as accurately as PROBE.

Although MEME has scores almost as high as PROBE, a recent analysis of
both MEME and PROBE using a data set of 497 RT sequences demonstrated that
PROBE is still able to outperform MEME. [submitted to GIW, McClure, Hudak
and Kowalski, 1998]  The data set used in the study contained an unequal
distribution of sequence similarity which resulted in some sequences, or motifs, to
be over-represented.   MEME will get trapped in a local optima by recognizing the
biased motif as the correct motif and considering any divergent form incorrect.  This
results in the exclusion of the entire sequence, thus reducing the score and producing
biologically uninformative results.  PROBE, however, handles a biased data set by
eliminating redundant sequences or sequences that are too similar to each other.
Purging of sequences  produces an equally distributed data set representative of the
entire 497 sequences from which it can detect informative motifs with a high score.

A recent comparison of several methods that are also included in this study
(ITERALIGN, BLOCKMAKER, MEME, and PIMA) came to similar conclusions
about program performance. [L. Brocchieri and S. Karlin, 1998]  ITERALIGN and
PIMA were able to find the entire OSM of the Rec-A sequences.  MEME displayed
better performance than BLOCKMAKER.  Contrary to our experience with
MATCHBOX (table 2), the program correctly identified 6 out of 7 Rec-A motifs.
With the exception of MATCHBOX, program performance was comparable between
the two studies even though our study used more divergent sequences with shorter
motifs.

Our study has elucidated that PROBE is a superlative method currently available
for the detection of an OSM.
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4.2  Future Studies

Future studies will attempt to find an OSM among a larger group of highly
divergent protein sequences that share analogous function.  In addition to the RT
domain sequences, this data set will be include sequences from the RNA-dependent
RNA polymerases (RDRP) found in all other RNA viruses (e.g., HIV, Ebola, and
Measles).  In this case, some sequences of the data set cannot be statistically shown
to share common ancestry.  This raises the question of whether the observation of
an OSM is due to common ancestry versus sequence convergence.

Whether or not common ancestry is responsible for the limited sequence
similarity detected between the RT and RDRP sequences is an open question.
Several studies suggest a common ancestry among all RNA-dependent polymerases.
[P. Argos, 1988; O. Poch et al., 1989; M. Delarue et al., 1990]  These studies were
prompted by the detection of the highly conserved Asp-Asp motif in the RDRP of
polio [G. Kamer and P. Argos, 1984] which is also found in retroviruses.  Although
the Asp-Asp motif is conserved among some RDRPs and the RT domain, there are
only three additional residues found in common among these proteins, whose
lengths vary from approximately 300 to 2000 amino acids.  A recent reevaluation of
the multiple alignments that suggested these relationships concludes that there is a
lack of statistically significant signal remaining among the sequences to claim
common ancestry. [P.M.d.A. Zanotto et al., 1996]

A more robust motif-detection algorithm may aid in addressing the ancestry
versus convergence question regarding RDRPs and the RT domain of RDDPs.
Future studies will use the most reliable motif-detection method, as determined from
this study, to locate a potential OSM shared among the RDRPs and the RT domain.
Finding a reliable OSM would assist in creating separate hidden Markov models
(HMMs) representing the sequences of both the RDRPs and the RT domain based
on a new OSM-anchoring approach [see McClure and Kowalski, in these
proceedings].  By comparing the protein sequences of one group to the model of the
other, these HMMs can be used to evaluate the possibility of common ancestry
between these sequences.  If the probability is significant, then it would be
worthwhile to construct an HMM representing both the RDRP and RT sequences.
This approach could provide statistical evidence to either support or refute common
ancestry among all RNA-dependent polymerases.
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