
COMPUTING MINIMUM DESCRIPTION LENGTH FOR

ROBUST LINEAR REGRESSION MODEL SELECTION

GUOQI QIAN

Department of Statistical Science, La Trobe University,

Melbourne, VIC 3083, Australia

A minimum description length (MDL) and stochastic complexity approach for
model selection in robust linear regression is studied in this paper. Computational

aspects and implementation of this approach to practical problems are the focuses
of the study. Particularly, we provide both algorithms and a package of S language
programs for computing the stochastic complexity and proceeding with the asso-

ciated model selection. A simulation study is then presented for illustration and
comparing the MDL approach with the commonly used AIC and BIC methods.

Finally, an application is given to a physiological study of triathlon athletes.

1 Introduction

A powerful statistical tool for quantitative investigations in health and bio-
logical sciences is linear regression, where the simultaneous e�ects of a set of
variables on a response variable can be analyzed. An important task in linear
regression analysis is to screen a large number of potential explanatory vari-
ables to select that subset of them which �t the information contained in the
response variable both e�ciently and concisely. This is important because it
may cause not only serious computation round errors, but also key statistical
evidence undetectable if a regression model contains many irrelevant or su-
peruous explanatory variables. An equally important task is to see how the
selected model is a�ected by outliers in the data. Namely, the model should
be robust to radical change of a small portion of the data or a small change
in all of the data. A natural solution for robust model selection can be ob-
tained using the information-theoretic approaches such as Algorithmic Prob-
ability (ALP)(Solomono� 1964), Minimum Message Length (MML)(Wallace
and Freeman 1987), and Minimum Description Length (MDL) and Stochastic
Complexity (Rissanen 1986, 1987 and 1996).

Using the MDL and stochastic complexity approach, Qian and K�unsch
(1998 a&b) derived a new variable selection criterion for robust linear regres-
sion. This criterion chooses such a subset of the explanatory variables relative
to which the stochastic complexity of the data attains the minimum. The
stochastic complexity of the data relative to the underlying regression model
was shown to be approximated by the robust �tting error of the model plus
the model complexity | a term depending on the robustness and the signal-
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to-noise ratio of the model, and the weighted magnitude of the explanatory
variables. Thus the new criterion substantially generalizes those classic model
selection criteria such as AIC and BIC where the model complexity depends
only on the number of parameters. Asymptotic study reveals that the new
criterion selects with probability one the true model if it exists and can be
�nitely parameterized; and it has the ability of avoiding the two pitfalls of
either over-�tting or under-�tting that plague many model selection criteria
like AIC and BIC.

The current paper focuses on the computational aspects and the real ap-
plications of the stochastic complexity criterion for multiple robust regression
model selection. Speci�cally, we will address the methods and their proper-
ties of computing the robust parameter estimates, the weight function and the
criterion function that are involved in the model selection procedure. We will
also introduce a package of S language programs called msrob we have written
for the computations. We will then present a simulation study to compare the
new criterion with the commonly used AIC and BIC. Finally, we will give an
application for determining an athlete's total time in a triathlon from those
candidate variables measuring the athlete's gross physical characteristics, the
training load and the physiological makeup.

Some other closely related works are Baxter and Dowe(1996) and Dom
(1996). In Baxter and Dowe(1996) the problem of order selection for the
polynomial regression models is studied in a non-robust context and using
the MML principle which is developed by Wallace and co-workers since 1968.
Dom (1996) also studied mostly the non-robust polynomial regression order
selection but using the MDL principle. A polynomial regression model concerns
the relationship between a response variable and a polynomial function of
certain explanatory variable. So the statistical problems studied in these two
papers are very di�erent from ours which concerns the signi�cant relationship
between a response and certain subset of many explanatory variables in a
robust framework. MML and MDL both use the code length as a criterion
function for model selection. But there are also many signi�cant di�erences
between the two principles. This relationship will not be expounded further
here.

2 The Stochastic Complexity Criterion

When studying the dependence of a response variable y on a p-dimensional
explanatory variable x, a linear model is usually assumed between y and x.
Namely, for a sample of independent observations (xt1; y1); � � �, (x

t
n; yn) from
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(xt; y), we assume
yi = xti� + ri (1)

where � is a p-dimensional unknown parameter and ri is the error with mean
0 conditional on xi. Provided that the model (1) is valid, information about
the indicated dependence can be obtained from a statistical inference of �
based on the data. For validity of the model (1), we usually include in (1) all
the explanatory variables available in the �rst consideration in practice, which
results in a so-called full model. The validation of the full model usually can
be carried out based on the proper subject knowledge. However, if the full
model retains many explanatory variables, its statistical inference is typically
ine�cient and non-informative. Therefore, a variable selection procedure is
indispensable for proceeding with a good regression analysis. With such a
procedure, any important explanatory variables should not be missed out,
while at the same time no superuous variables should be included in the
model.

Of many attractive information-theoretic approaches, we choose to use the
MDL and the associated stochastic complexity. It is formalized by identifying
a model with the length of an instantaneously decipherable code which is
obtained from an optimal two-step coding scheme determined by this model.
For a parametric model, the two-step scheme �rst encodes the parameter space,
then encodes the data for each �xed parameter value. The shortest code length
obtained in such a way is called the stochastic complexity of the data relative
to the employed model. According to the MDL principle, the smaller the
stochastic complexity the better is the corresponding model.

From Rissanen (1996) and Qian and K�unsch (1998a) it follows that the
stochastic complexity relative to a class of parametric probability densities can
be expressed as the minus maximum log-likelihood for the data plus a model
complexity term determined by the Fisher information and the maximum like-
lihood estimator (MLE) of the parameter. This result can be directly applied
to a regression model (1) if the ordinary least squares method is used, i.e,
the error ri is given a normal distribution. But the parameter estimation and
model selection based on least squares can be seriously a�ected by one or few
outliers in the data. Thus, in robust regression, one only assumes ri to follow
some distribution in an in�nite dimensional neighbourhood of the normal. An
optimal representation of this neighbourhood is known to be the so-called least
favorable distribution (cf. Hampel et al.(1986,section 7.4d) and Huber (1964)).
When using the least favorable distribution to describe the data, the length of
the code constructed will be robust against a radical change of a small portion
of the data or a small change in all of the data. Thus, the model selection
procedure will also be robust based on the robust code for the data. With
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this argument and other ideas underlying the two-step coding scheme, it has
been shown that the stochastic complexity of Yn = (y1; � � � ; yn)

t relative to the
regression model (1) can be well approximated by

SC(YnjXn) =
nX
i=1

�cf
wi

�
(yi � xti�̂)g+

p

2
lnE�

00

c

+
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ln jXt
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j�̂j j+ n�1=4

�
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plus terms irrelevant to model selection. The technical detail for the derivation
of equation (2) can be found in Qian and K�unsch (1998b). In equation (2),
�c(t) =

1
2
t2 for jtj < c and cjtj � 1

2
c2 for jtj � c is the Huber function used to

prevent the model selection from being heavily a�ected by outliers in the data,
and �

00

c (t) = 1 for jtj < c and 0 for jtj � c. The constant c in the Huber function
is used to adjust the degree of e�ciency of the associated robust estimation
procedure. The expectation E�

00

c = (2�(c)� 1)=(2�(c)� 1 + 2c�1�(c)), where
� and � are respectively the cumulative distribution and the density function
of standard normal, is obtained by taking the expectation with respect to the
least favorable distribution for the error term in equation (1). In addition,
Xn = (x1; � � � ; xn)t is an n � p design matrix, Wn = diag(w1; � � � ; wn) with
wi = w(xi) 2 (0; 1] a weight function measuring the outlyingness of xi, and �

measures the scale of w(xi)ri. The M-estimator �̂ = (�̂1; � � � ; �̂p) is de�ned by

�̂ = argmin


nX
i=1

�cf
wi

�
(yi � xti)g: (3)

It can be shown that �̂ is also the MLE relative to the least favorable distrib-
ution. Since the objective is to select an optimal model, those irrelevant terms
in the stochastic complexity can be removed.

Note that each term in (2) has a clear interpretation. The �rst term in (2)
is the sum of the robusti�ed �tting errors which shows the goodness of robust
�t to the observations. It will decrease if additional explanatory variables are
included in the model. This implies that the more explanatory variables are
included in (1) the shorter is the code length for encoding the data. But
the stochastic complexity also depends on other terms in (2) representing the
model complexity. The second term gives the cost of using a robust method,
which is 0 if c = +1 and negative otherwise. Note that c = +1 corresponds
to the least squares method which is non-robust. Thus a robust method is
preferred. The third term gives the weighted magnitude of the explanatory
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variables and the last one the generalized signal-to-noise ratio. Therefore,
the model complexity in (2) is much more comprehensive than that in many
other criteria, e.g. AIC, BIC and Mallows' Cp, where it depends only on the
dimension of the parameter. One can also see that the model complexity in
(2) depends on the Fisher information In(�) = ��2(E�

00

c )X
t
nW

2
nXn.

The expression (2) has to be modi�ed to be invariant. Qian and K�unsch
(1998b) proposed the following modi�cation
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The quantity s2
x(j)

can be regarded as an estimate for the variance of the j-
th component of x. Assuming that xi1 � 1, i.e. the regression contains an
intercept, and that the p components of x are linearly independent and w(x) is
invariant, it can be shown that SC

0

(�) is invariant under both scale and shift
transformations of y and x.

Suppose that the regression model (1) is the full model under consid-
eration, the set of all candidate models can be identi�ed with A = f� :
any non-empty subset off1; � � � ; pgg or a subset of A. Each � in A corresponds
to a sub-model of (1) which contains those components of x indexed by �, and
vice versa. Based on (4), we propose the following model selection procedure:

1. For each candidate model � 2 A, compute SC
0

(YnjX�n), where X�n

consists of those columns of Xn indexed by �.

2. Select the model �� which minimizes SC
0

(YnjX�n) among all candidate
models in A.

By an asymptotic expansion for SC
0

(YnjX�n), it can be found, under some
very general regularity conditions, that the stochastic complexity (4) for a
model that incorrectly describes the dependence between y and x exceeds that
for a correct model by a term of order O(n) with probability 1; and the sto-
chastic complexity for a correct model exceeds that for the simplest correct
model by a term of order O(logn) with probability 1. Therefore, the proposed
procedure above selects with probability 1 the simplest model of those in A
which correctly describes the dependence between y and x. We refer to Qian
and K�unsch (1998b) for a rigorous proof of this result. In addition, it can be

Pacific Symposium on Biocomputing 4:214-325 (1999) 



shown using section 6.3 of Hampel et al. (1986) that the above procedure is
robust with bounded inuence against outliers of both y and x provided that
the weight function w(x) is properly chosen.

3 Computing the Stochastic Complexity

To compute the stochastic complexity (4), we must be able to compute �̂ and
�. In addition, we should have a procedure for choosing the weight function
w(x) and the tuning parameter c.

Computing the M-estimator �̂. From (3) it follows that �̂ is the solution
of

nX
i=1

wi

�
 cf

wi

�
(yi � xti�)gxi = 0; (5)

where  c(t) = �
0

c(t) = t for jtj < c and c � sign(t) for jtj � c. De�ne ui = w2
i vi

with vi =  cf
wi

�
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�
(yi � xti�)g. The equation (5) is equivalent to

1

�2

nX
i=1

ui(yi � xti�)xi = 0: (6)

It follows from (6) that

�̂ = (
nX
i=1

uixix
t
i)
�1(

nX
i=1

uiyixi): (7)

So �̂ can be computed with a recursive procedure provided that �, wi's and
c are given. Namely, starting from an initial value of �, we compute the
weights ui's, then compute a new value of � from (7). Continue this process
until the di�erence between two successive computations is negligible. The
above procedure is referred to be the iteratively reweighted least squares(IRLS)
method. By Huber (1981, section 7.8) it can be shown that the IRLS method
used here is convergent provided that the design matrix Xn has full rank.

Computing an estimator of �. The scale parameter � is treated as a nui-
sance parameter in our selection procedure. It could be estimated di�erently
for each candidate model considered. But this way entails encoding the para-
meter � and including its code length in formulating the stochastic complexity
(4), which is not the case for our approach. Thus we are apt to a simpler way
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to estimate � from the full model and to use the same estimate for all the can-
didate models. This will also ensure a desirable property that the accumulated
robust �tting error, i.e. the �rst term of (4), decreases as additional explana-
tory variables are included in the model. Usually, a robust estimate of � can
be obtained by using essentially Huber's proposal 2 (Huber 1981, p.137) or
Hampel's median absolute deviation (Hampel 1974, p.388). Using the former
method, �̂ is the solution of the equation

nX
i=1

 2cf
wi

�
(yi � xi�̂)g = (n� p)(c): (8)

where (c) = 2�(c) � 1� 2c�(c) + 2c2(1� �(c)) is chosen in such a way that
it is the expectation of the left hand side of (8) if wi(yi � xi�) = wiri has a
N (0; �) distribution. Using the vi's de�ned above, the equation (8) can again
be solved by a convergent recursive method. When using Hampel's method, �
is estimated by

1:4826�medianifwi(yi � xi�̂)g:

Choosing the weight function w(�). Ideally w(x) should be determined
by a model which correctly describes the dependence between y and x. But
whether a model is correct or not is unknown before proceeding with the model
selection. In addition, the penalty of using a wrong model for determiningw(x)
is not given in the criterion (4). Due to these facts, we suggest that w(x) be
determined based on the full model. Based on the full model, we proposed
that

w(x) = wb(x
tBx) where wb(t) = min(1; bp

t
) (9)

with b chosen a priori (e.g. b = p) and B a positive de�nite matrix determined
by

2�(c)� 1

2�(c)� 1 + 2c�1�(c)

1

n

nX
i=1

wb(x
t
iBxi)

2xix
t
i = B�1: (10)

By using (9) and (10), the M-estimator �̂ possesses a robustness property
called the bounded self-standardized sensitivity. The expression (9), such a
form is often used for the weight function in robust statistics, implies that the
inuence of x will be weighted down if xtBx is larger than a given value b.
Clearly, the matrix B can be computed with a recursive procedure once b and
c are �xed. But this procedure may not converge since the solution B of (10)
may not exist or may be multiple. Empirical study shows that the procedure
is convergent if b is large enough, but all wi's equal 1 if b is too large. A further
investigation is needed for this problem.
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Choosing the tuning parameter c. The smaller the parameter c is, the
more robust is the model selection procedure, but at the same time the pro-
cedure is also less e�cient. We will choose the well-known value 1.345 for c
so that �̂ has e�ciency 0.95 when ri follows a normal distribution. See Huber
(1981,p.91) and Hampel et al. (1986, p.399) for detail.

4 Software for implementing the stochastic complexity criterion

The S language (Becker, Chambers and Wilks, 1988) provides a very exible
environment for analyzing data. We have written a package of S functions,
called msrob, for the robust regression model selection using the stochastic
complexity criterion and some other related criteria. There are two key func-
tions in this package: xrlm.select and xrlm. The function xrlm.select is
used to select the optimal regression model by one of the following four criteria:
stochastic complexity, Ronchetti's robust AIC (Ronchetti, 1985), Hampel's ro-
bust AIC (Hampel, 1983) and robust BIC (Machado, 1993). The function
xrlm is used to �t a robust regression model according to (3). The pack-
age msrob can be obtained free of charge via the World Wide Web address
http://lib.stat.cmu.edu/S/msrob or by sending an e-mail message con-
taining the text \send msrob from S" to statlib@stat.cmu.edu.

5 Simulation and Example

Simulation results. We carried out a simulation study to evaluate the ro-
bustness performance of our stochastic complexity criterion. For purpose of
comparison, results for three other criteria were also obtained. The three cri-
teria are the two versions of the robust AIC given by Ronchetti(1985) and
Hampel(1983) and the robust BIC by Machado (1993). In the study we con-
sidered Y = �0 + �1X1 + �2X2 + �3X3 + �4X4 + �5X5 + �6X6 + r as the full
model. So there were in total 26 = 64 possible sub-models with an intercept
term. The sample size n was chosen to be 30. The six explanatory variables
X1 to X6 were generated independently and uniformly on [0; 1] except that
the �rst observation of each Xi was 3 and the second was 5. Thus, the �rst
two sample points were leverage points and they had large inuence on the
regression procedure. Six distributions for the error r were chosen to represent
various deviation from normality. They are standard normalN (0; 1), student's
t with 3 degrees of freedom, Cauchy (t(1)), log-normal with mean 0 and scale 1
which is asymmetric, slash which is a standard normal divided by a uniform on
[0; 1], and contaminated "-normal 0:9N (0; 1) + 0:1N (0; 3). The observations
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Table 1: Frequencies of Di�erent Models Being Selected in 200 Simulations

Error Distribution
Model Category N (0; 1) t(3) Cauchy Log-N(0,1) Slash "-N

Stochastic Complexity Criterion
True 143 117 30 129 7 135
Other correct 55 49 9 44 5 50
Incorrect 2 34 161 27 188 15

Ronchettis's Robust AIC
True 118 111 42 122 20 122
Other correct 81 72 17 64 8 70
Incorrect 1 17 141 14 172 8

Hampel's Robust AIC
True 126 116 40 127 17 129
Other correct 72 64 16 55 7 63
Incorrect 2 20 144 18 176 8

Machado's Robust BIC
True 168 134 28 151 6 156
Other correct 27 19 7 15 2 27
Incorrect 5 47 165 34 192 17

of Y were obtained from

Y = 1 + 2:5X1 + 3X2 � 3X3 + r (11)

with r generated from one of the six error distributions. The coe�cient values
were so selected that they would give t-values of about 4 if r were normally
distributed. It is clear that the model (11) is the true model. But other
models containing X1, X2 and X3 are also correct models. We carried out 200
simulation runs. Table 1 gives the frequencies of selecting the three types|
true, other correct and incorrect|of models by each of the four criteria.

From Table 1 we see all the four criteria perform quite well even when the
error distribution is considerably deviated from normal (i.e. t(3), log-normal
and "-normal). The relative frequencies of selecting the true model is between
55.5% and 78% for these three error distributions. (Compare with 59% and
84% for the normal error.) They are between 4% and 23.5% in selecting the
incorrect models. But when the error distribution is Cauchy or slash, neither
of the criteria works well in selecting the correct models. This is probably
because Cauchy and slash deviate so much from normal that their population
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expectations do not exist. Thus a more robust and e�cient procedure would
be required for this situation. When comparing these four criteria with each
other, we see the AIC methods usually have lower frequencies of selecting the
true model but higher frequencies of selecting other superuous correct models
than the other two criteria. The stochastic complexity criterion may have little
lower frequencies of selecting the true model than the BIC method, but it also
has lower frequencies of selecting the incorrect models so has a more stable
performance. Since in practice one generally does not know which candidate
model is exactly the true model, to reduce the chance of selecting an incorrect
model is as important as to enhance the chance of selecting the true one.
From this point of view we would prefer the stochastic complexity criterion
to the robust BIC. Actually a further simulation study by us reveals that
the stochastic complexity method performs more stable than the robust BIC
especially when the � values in the true model have more moderate t-values
mentioned above, namely, when the signal-to-noise ratio becomes weaker.

An actual example. To illustrate the application to practical problems for
our proposed method, we present a real data example arising in a physiology
study of triathlon athletes. The data used in this example were taken from
Kohrt et al. (1987) who studied the performance of a group of 65 male athletes
in half-triathlon event over a 6-week period. The data can also be found in
Glantz and Slinker (1990, pp.647-648). There are 10 variables in the data:
half-triathlon performance time (t min.), age (A years), weight (W kg.), years
triathlon experience (E years), amount of training running (TR km/week),
biking (TB km/week), and swimming (TS ,km/week), and maximum oxygen
consumption while running (VR mL/min/kg), biking (VB mL/min/kg), and
swimming (VS mL/min/kg). These 10 variables represent the athletes' half-
triathlon performance, gross physical characteristics, training, and exercise
capacity.

The objective of the study is to see which variables determine best the
athletes' �nal time when they compete in the triathlon. This was addressed
by conducting a variable selection on the full regression model

t = �0+�1A+�2W+�3E+�4TR+�5TB+�6TS+�7VR+�8VB+�9VS+r: (12)

We applied to the variable selection the stochastic complexity criterion as well
as Ronchetti's and Hampel's robust AIC and Machado's robust BIC. There
were in total 29 = 512 sub-models for selection if only considering those in-
cluding an intercept term. Table 2 lists the 8 best sub-models selected from
these 512 models by each of the four criteria. In the table, each set of the 8
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Table 2: Eight Best Models Selected by Each Criterion in the Example

Stochastic Complexity Ronchetti's Robust AIC
A+ E + TR + TB + VR A+ E + TR + TB + VR
A+ E + TR + TB + VR + VB A+ E + TR + TB + VR + VB
A+ E + TB + VR A+ E + TR + TB + TS + VR
A+ E + TR + TB + TS + VR A+ E + TR + TB + VR + VS
A+ E + TR + TB + VR + VS A+ E + TR + TB + TS + VR + VB
A+ E + TS + VR + VB A+W +E + TR + TB + VR
A+W +E + TR + TB + VR A+ E + TR + TB + VR + VB + VS
A+ E + TB + VR + VB A+W +E + TR + TB + VR + VB

Hampel's Robust AIC Machado's Robust BIC
A+ E + TR + TB + VR A+ E + TR + TB + VR
A+ E + TR + TB + VR + VB A+ E + TB + VR
A+ E + TR + TB + TS + VR A+ E + TR + TB + VR + VB
A+ E + TR + TB + VR + VS A+ E + TR + TB + TS + VR
A+W +E + TR + TB + VR A+ E + TR + TB + VR + VS
A+ E + TR + TB + TS + VR + VB A+W +E + TR + TB + VR
A+ E + TR + TB + VR + VB + VS E + TS + VR + VB
A+W +E + TR + TB + VR + VB A+ E + TS + VR + VB

models is displayed according to the associated criterion values in an ascending
order.

From Table 2 we see that all the criteria selected the same best model
which includes the �ve explanatory variables A, E, TR, TB and VR. These
�ve variables are also included in most of the other 28 models. However, each
of the other four explanatory variables appears only small number of times in
these models. This conclusion is the same as that by Glantz and Slinker (1990,
pp. 256-261) who used the Mallows'Cp criterion. From Table 2 we can also see
that the robust AIC methods tend to select more complicated models while
the robust BIC tends the opposite way. The stochastic complexity method
gives an improvement over the robust BIC.
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