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Computer simulations o�er critical insights into the reaction of biological macro-

molecules, especially when the molecular shapes are too complex to be amenable

to analytical solution. In this work, the Weighted-Ensemble Brownian (WEB)

Dynamics simulation algorithm is adapted to a reaction of two unlike biological

molecules, with the interaction modeled by a two-parameter system: a spheri-

cal molecular depositing on a target region of an in�nite cylinder with a periodic

boundary conditions. The original algorithmof Huber and Kim1 is streamlined for

this class of reactive models. The reaction rate constant is calculated as a function

of relative sizes of the reactive to non-reactive regions of the cylindrical molecule.

An analytical expression for the rate constant is also obtained from the solution of

the di�usion equation for the special case of a constant-ux boundary condition.

Good agreement between analytical and simulation results validates the applica-

bility of WEB Dynamics to a reaction of molecules of complicated shape. On the

other hand, the simple form of our analytical expression is useful as a testing case

for other simulation and numerical techniques.

1 Introduction

Biological molecules react only when they are in particular orientations be-

cause of the presence of reactive sites. Consequently, the geometry of a re-

active site is of paramount importance to drug design. But because of the

complicated shapes of many biological molecules, an analytical treatment of

their relative motion is di�cult; thus computer simulation techniques, such as

Brownian Dynamics 2;3, are widely used for this purpose. Although molecu-

lar dynamics simulations are commonly applied to detailed molecular models,

Brownian dynamics allow access to longer time scales, albeit with the loss

of molecular resolution of the solvent molecules. Brownian dynamics is of-

ten employed in conjunction with molecules modeled as combinations of solid

bodies of relatively simple shapes: spheres 3;4, spheroids 5, cylinders 6, with
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reactive sites described by local charge distributions or surface reactivity 4;7.

For protein{protein reactions, such models have been widely investigated by

Brownian Dynamics simulations 7;8;9 as well as analytically 10;11;12;13, with the

protein shapes modeled as spheres. Wu et al. 10 give an extensive review of

these and other related works. Of special note is the analytical approach by

Shoup et al. 11 where di�usion of one spherical molecule on another is con-

sidered in the constant ux approximation with the boundary condition for

probability on the reactive site (P = 0) replaced by a constant probability ux

(@P=@n = const). This method, although approximate, gives an expression

for the rate constant in a closed analytical form that o�ers useful insights.

The prior works mentioned above were directed generally toward models

of protein-protein interaction. However for the reaction of a small molecule

with DNA or RNA a modi�ed approach is necessary due to disparate length

scales of the reacting species. In this study, one molecule is presented as a

sphere, another as a three-segment cylinder with one segment highly reactive

to the �rst molecule. We applied the Weighted-Ensemble Brownian (WEB)

Dynamics for our Brownian dynamics implementation because of its demon-

strated e�ciency in simulation of complex geometries 1;5. WEB Dynamics

achieves such acceleration by dividing the con�guration space into bins in a

manner that facilitates biased sampling of speci�c regions of the con�gurations

of greatest interest (e.g. the reactive con�guration). In one-dimensional prob-

lems, the bin generation algorithm is obvious 1; for two-dimensional problems,

the generation of bins becomes non-trivial. We suggest various criteria (shape

of bin boundaries, bin thickness and a size of the time step in each bin) for

setting up bins for multi-dimensional cases, which take into account the ex-

pected shape of the probability density and ux. Our bin algorithm yields fast

convergence of the results, and the resulting WEB Dynamics algorithm thus

becomes a convenient tool to investigate this class of biomolecular reactions.

Simulations were performed in a wide range of relative sizes of the cylinder

reactive surface including the limiting case of the completely reactive cylinder.

We also present an approximate solution of the cylindrical di�usion equa-

tion by the method similar to the method used by Shoup et al.11 (their analysis

was for a spherical geometry). We substitute the boundary condition of zero

probability on the reactive surface of the cylinder (P = 0) by the boundary

condition of constant and speci�ed ux (@P=@n = const), subject to a require-

ment to minimize discrepancy from the exact solution. We obtained a simple

analytical expression for the rate constant as a function of parameters (sizes of

molecules, reactive segment etc.). Both analytical and simulation results are

in good agreement over the full range of these parameters.
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Figure 1: Molecular model (a) and bin system (b). The sphere molecule has radius Rp
and di�usion coe�cient Dp. The cylindrical molecule has radius Rd, reactive segment (r)

of length 2LR, and two non-reactive segments (n). The simulation region is the cylinder of

radius Rout and length 2L co-axial with the molecule. The axis z is the cylinder axis, z = 0

is the center of the reactive segment. Bin system (b) consists of 100 bins: 25 cylindrical bins

(1), 25 cylindrical bins (2), and 50 ellipsoidal bins (3).

2 Model of Molecules

We consider a reaction of two species, A and B, A + B ! AB, with corre-

sponding concentrations nA and nB . The reaction rate constant, k, is de�ned

by the equation
dnA

dt
= k nA nB: (1)

There are two ways to calculate the rate constant of the reaction: through the

ux of probability density, obtained from a solution of the di�usion equation,

or through the ux of particles on the reactive surface, which can be obtained

from a computer simulation based on the corresponding stochastic di�erential

equation. We will examine both approaches.

To make our analytical analysis and computer simulation e�ective we need

a simpli�ed model of the reactive molecules. Figure 1(a) shows the molecular

model. The �rst molecule is modeled as a sphere of radius Rp. The sphere

is subjected to Brownian motion with the translational di�usion coe�cient

Dp. For the present study, we consider the whole surface of the sphere to be

reactive to the second molecule, but this is not an inherent limitation of the

method. The second molecules is a long cylinder of radius Rd. The part of the

cylinder of length 2LR is highly reactive to the �rst molecule. In order to model

molecules with multiple reactive sites, we assume that there are several reactive

segments on the cylinder separated by non-reactive segments. For simulation

and analytical treatment, a cylinder fragment of length 2L is placed inside of

the simulation region, the co-axial cylinder with the same length 2L and radius

Rout. The reactive part of the cylinder fragment is placed in the center of the
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simulation region. Total length of the fragment, 2L, represents an average

length per reactive site of the cylindrical molecule, while 2LR is a typical size

of such site. The radius of the simulation region, Rout, is chosen through the

condition that the volume of the simulation region is the volume per length

2L of the �rst molecule and related to its concentration in the solution. The

di�usion of the cylinder is neglected because of much higher size of cylindrical

molecule compare to the sphere. We also assume that the bulk concentration

of the �rst molecule is known and use it as a boundary condition on the outer

surface of the simulation region. In the cylindrical coordinate system (Fig. 1),

r is the radial coordinate, z is the coordinate along the cylinders with z = 0

corresponding to the center of the reactive segment.

With all these assumptions, the problem reduces to a di�usion of a point

particle with the translational di�usion coe�cient Dp to a cylinder of radius

RD = Rd+Rp and non-uniform reactive surface. Although the particle moves

in three dimensional space, the problem has a two-dimensional character since

all values of interest (probability density, probability ux) depend only on two

spatial coordinates, r and z. The dependence on the z-coordinate arises due

to the presence of reactive site on the cylindrical molecule. Finally, we note

that the particle is not to be confused with the molecular species - the particle

represents the coordinates of the reacting sphere in the con�guration space.

3 Simulations

3.1 WEB Dynamics Algorithm

In this section we briey outline the WEB Dynamics algorithm as it is de-

scribed by Huber et al. 1. A simulation region is a cylinder of length 2L, inner

radius RD, and outer radius Rout. Many particles move inside the simulation

region independently. Particles start from some initial con�guration (it may be

random uniform placement of particles or anything else), and move according

to Brownian Dynamics equation 2

Xi+1 = Xi +Wi

p
2Dp�t� FDp�t=kB T: (2)

Here Xi are Cartesian coordinates of the particle on the i-th time step, �t is

the time step size, Wi is the vector of the Gaussian random values with zero

mean and unit variance, F is the systematic force acting on a particle, kB is

the Boltzmann constant, and T is the temperature. On the reactive part of

the cylinder, the instantaneous reaction takes place (zero probability to �nd a

particle). A particle is terminated each time it reaches the reactive segment,

and reintroduced on the outer surface of the simulation region to preserve the
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steady state condition. Conditions on the non-reactive part of the cylinder and

at z = �L are reective conditions (zero particulate ux). If during the time

step a particle penetrates one of these surfaces, change of the coordinate along

the surface is accepted, but other coordinates are kept as before the time step.

If a particle goes out of the simulation region at the outer surface(r = Rout),

the step is not accepted.

The simulation region is divided into the bins (layers), as will be discussed

in detail in the next section. On the �rst time step equal weights are assigned

to all particles. At the end of each time step the weights of particles are recalcu-

lated by combining and dividing particles to have the same number of particles

in each bin. These \weighted particles" represent probability packets rather

than real molecules, because their weight is equal to an average probability to

�nd real particle in this part of the con�guration space

Wi �< Pi > dVi: (3)

Here Wi is total weight of the particles in the i-th bin, < Pi > is the average

probability density in the bin and dVi is the volume of the bin. The Dirichlet

boundary condition (probability density speci�ed at boundary) at the outer

surface would be satis�ed if the weight of particles in the closest to the outer

surface bin is equal to the volume of this bin.

The weight of particles arriving on the reactive segment was accumulated

over some number of time steps Nf , and the particle ux was calculated as

the accumulated weight per unit time JW =
P

jWj=(Nf ��t). The number

of time steps for accumulating the ux was chosen according to the condition

Nf ��t = 0:1�Tc, where Tc = R2
D=Dp is the characteristic time for the problem.

The rate constant is connected with the accumulated ux through the volume

of the simulation region, V , and Avogadro's number, NA.

k = JW V NA: (4)

Time of calculation in WEB Dynamics is proportional to the number of

bins and to the number of particles per bin. We used 100 bins and 4 particles

per bin in all simulations.

3.2 Criteria for Creating Bin Structure

There are two important issues, which have to be taken into account in dividing

a simulation region into bins. The �rst one is connected with Eq.3 stating

that the weight of particles in each bin is the average probability in this bin.

The boundaries of the bins are chosen to follow the expected \contour lines"

of probability, so that averaging during simulation does not give a round-o�
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error due to combining of particles with very di�erent weights. Another issue

is equilibrating of the system. Since particles in the simulation start from

some initial con�guration, it takes some time for distribution of \weight" to

reach steady state. Thus, a part of simulation time always has to be spent

on equilibrating of the particle weight distribution. It is essential to choose

appropriate bin system in order to reduce this time. For one-dimensional case1,

the choice of the bin system is obvious, bins are layers, whose long boundaries

are the constant coordinate surfaces. In such con�guration, the probability ux

is normal to the bin boundaries, and that ensures fast interchange of particles

between neighbor bins and uniform probability in each bin.

For multi-dimensional case, we also choose bins as layers of some shape

and require two criteria to be satis�ed: boundaries between bins should be

perpendicular to the principal directions of the probability ux, and the bin

thickness should be comparable to the average displacement of the particles

during one time step. Due to the �rst condition, there is no signi�cant proba-

bility gradient along the bin boundary, and probability rather uniform inside

the bin. Furthermore, motion of the particle in each bin is much more favorable

across the bin than along its boundary, and particles have su�cient chance to

move to the next bin during one time step.

There are three major directions of the ux in the considered problem:

in r-direction toward the cylinder, toward the reactive segment and along the

cylinder. Each direction prevails in some particular region of the space. In ac-

cordance with these three directions, the bin structure consists of three regions

(Fig. 1(b)): 25 cylindrical bins in r-direction far from the cylinder surface; 25

cylindrical bins in z-direction along the non-reactive part of the cylinder sur-

face, and 50 ellipsoidal bins around the reactive segment. Ellipsoidal bins were

constructed by creating ellipses with end points of the reactive segment as fo-

cuses and rotating them around z-axis. According to criteria above, thickness

of a bin, �Xbin, should be of order of an average random displacement of the

particle in this bin, �XB =
p
2Dp�t.

�Xbin < �XB : (5)

Variation of the time step also accelerates the calculations 1. We scale

the time steps in each bin using the condition that the random displace-

ment of a particle, �XB , is bigger than the systematic displacement, �XF =

F Dp�t=kB T . The resulting time step in each bin satis�es:

�t� 2Dp
�1 (kB T=F )

2
: (6)

Thus, in the presence of a force, the value of the force inuences the time

step in each bin and the bin thickness. In the case of pure di�usion (F = 0),
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the minimum time step, in the bins close to the reactive segment, was chosen

�tmin = 10�4 Tc, and the maximum time step, in the bins close to the outer

surface, �tmax = 100�tmin.

If all conditions above are satis�ed, simulations reach steady state on the

time of Tc. Total simulation time was 10 Tc in order to reduce statistical

uncertainty of the results.

4 Analytical Solution of Di�usion Equation

4.1 Cylindrical Di�usion Equation

To describe the reaction of two molecules we employ the steady-state di�u-

sion equation for probability density P (r; z) of the sphere molecule within the

simulation region. For the model considered here there are periodical reactive

segments on the cylinder. Because of this, the probability ux on the ends of

the cylindrical molecule is zero: the sphere has the equal probabilities to go to

either reactive segment (@P=@z = 0). There is no reaction on the non-reactive

part of the cylinder surface, and ux here is also zero (@P=@r = 0). The prob-

ability to �nd the sphere on the reactive part of the cylinder is zero due to

instantaneous reaction (P = 0). The probability density on the outer surface is

the known value, which could be set to 1 to simplify algebraic manipulations.

Using L as a characteristic length, we can write the di�usion equation and

boundary conditions in the dimensionless form.

1

r�
@

@r�

�
r�
@P

@r�

�
+
@2P

@z�2
= 0; (7)

(@P=@z�)jz�=�1 = 0; (@P=@r�)jr�=R�

D
; L�

R
<jz�j<1 = 0; (8)

P jr�=R�

D

; jz�j<L�
R

= 0; P jr�=R�

out

= 1: (9)

where values, denoted by the star, are reduced values (var)� = (var)=L, and

(var) = fr; z; LR; RD; Routg. The ux JR of probability density on the reac-

tive part of the surface SR of one molecule of species B is connected with the

rate constant through the Avogadro number NA,

k = JRNA; JR = �

Z
SR

Dp

@P

@xi
ni dS = �Dp L

Z
S�
R

@P

@xi�
ni dS

�: (10)

For the uniformly reactive cylinder the term @2P=@z�2 in Eq.7 is absent;

the solution of the equation follows upon performing the integration and yields

the expression for the rate constant:

k(LR=L) = 4� LDp NA (ln(Rout=RD))
�1

: (11)
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The following section will consider a solution of the di�usion equation for the

less trivial case of a non-uniform reactive surface of the cylinder.

4.2 Non-uniformly Reactive Cylinder

The problem, as formulated in the previous section, is challenging due to the

mixed boundary conditions: the probability is speci�ed on one part of the

surface and the ux is known on the rest of the surface. It is important to

recognize that we are not interested in the details of the probability distribution

in the space, but only in the ux on the reactive segment. Thus, we can

substitute this problem by a problem with another, more convenient, boundary

condition, which gives the same ux on the reactive segment. Instead of zero

probability of the sphere to be found on the surface of the reactive segment,

we will stipulate a constant probability ux J0 on this part of the surface. The

value of the constant, J0, is determined from the additional condition that

average probability density at the reactive segment is zero

@P

@r�

����
r�=R�

D
; 0<jz�j<L�

R

= J0;

Z L�
R

�L�
R

P (r�; z�) dz� = 0: (12)

The eigenfunction expansion for the present problem is a Fourier-Bessel

series of the form:

P = c ln (r�=a) +

n=1X
n=1

[AnK0(ir
�) + Bn I0(ir

�)] cos(iz�): (13)

Here Kj and Ij are the Bessel functions of order j, i = �n, n is a positive integer

number, a, c, An and Bn are constants. After determining these constants

from the boundary conditions Eq. 8, 9 and the value of the constant J0 from

the Eq. 12, we have following expression for the rate constant (k = NA JR =

NADp LJ0 S
�

R = 4�NADp LJ0 L
�

RR
�

D)

k = 4�DpNA L (ln(Rout=RD) + S)�1; (14)

S =

i=�=1X
i=�=1

2 sin2(iL�R) (K0(iR
�

D) I0(iR
�

out) � I0(iR
�

D)K0(iR
�

out))

(iL�R)
2 iR�D (K1(iR

�

D) I0(iR
�

out)� I1(iR
�

D)K0(iR
�

out))
: (15)

To calculate the rate constant from this expression, we need to know the sum

S. Obviously, in the limit of uniform reactive surface (L�R ! 1), S is zero, and

the expression for the rate constant Eq. 14 reduces to Eq. 11 for uniformly

reactive cylinder. The function G(x) is always less than 1, and goes to 1 as
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Figure 2: Rate constant for uniformly (a) and partly (b) reactive cylinder. The right axis on

each graph is the reduced rate constant k� = k=4�DpNA L, the left axis is the actual value

of k for L = 400�A and Dp = 5:6 � 10�3�A�2=ps. Reduced cylinder radius for all simulations

is R�
D
= 0:125. The rate constant for uniformly reactive cylinder (a) is plotted as a function

of the simulation region size Rout=RD. Simulation results (dots) are for three values of the

ratio Rout=RD = 4;16;64. The rate constant of the partly reactive cylinder (b) is plotted

as a function of the relative size of the reactive segment L�
R
for the ratio Rout=RD = 16.

Simulation results (dots) are for L�
R
= 0:025; 0:05; 0:125; 0:25; 0:5; 0:75; 1. Lines represent

calculations by analytical formula with the sum S truncated up to several terms.

x ! 1. For some range of L�R, the �rst term alone in the sum S may be

accurate enough for most applications. At moderate values of L�R, 0:4 < L�R,

the di�erence caused by sum truncation is of the order of several percent. In

this range, we can further simplify expression for the rate constant replacing

S by the �rst term. Smaller values of L�R require more terms in the sum S in

order to obtain an accurate result. At L�R = 0:25, �rst two terms in the sum

S give result with accuracy of 3 percent, while for L�R = 0:05, 6-8 terms are

necessary for the same accuracy.

5 Simulation Results

Since simulation were performed using reduced values of geometrical param-

eters L�R, R
�

D, R
�

out, the resulting rate constant is also a reduced quantity

according to the formula k� = k=(4�NADp L). We present simulation results

(Fig. 2) in two forms, the right axis is the reduced values of the rate constant

k�, and the left axis is the actual values of k calculated for L = 400�A and

Dp = 5:3 � 10�3�A
2
=ps, which is the di�usion coe�cient of a sphere of radius

Rp = 37:5�A in water at room temperature. For all simulations the value

R�D = 0:125 is used, while values of L�R and R�out were varied.
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First of all, we compared simulation results for uniformly reactive cylinder

to the exact analytical solution Eq. 11 (Fig. 2(a)). All 100 bins in this one-

dimensional case were cylindrical bins such as (1) on Fig. 1(b). Figure 2(a)

represents the rate constant of uniformly reactive cylinder as a function of outer

radius, circles are the simulation results, uncertainties are shown as vertical bar

(one standard deviation), and the solid line is the analytical result. Simulations

were performed for three values of outer radius, Rout=RD = 4; 16; 64. The ratio

Rout=RD is connected with concentration of cylindrical molecule through the

requirement that the volume of the simulation region is the volume per length

2L of the cylindrical molecule. For the cylinder molecules of total length

8000 �A (10 fragments), we used values of the ratio Rout=RD corresponding to

concentrations 3 � 10�6 M, 2 � 10�7 M, and 1:2 � 10�8 M.

In addition, simulations were performed for various sizes of the reactive

segment. Figure 2(b) represents the rate constant as a function of the relative

size L�R of the reactive segment. Circles are the simulation results and the

lines are the values, calculated from Eq. 14 with the sum S written to just a

few terms. It is clear, that even the �rst term alone in the sum S of Eq. 14

gives a good approximation for moderate values of the reactive segment (the

relative size of the reactive segment L�R is bigger then 0.4). Taking into account

three more terms allows extension of the application of the Eq. 14 down to

L�R = 0:125.

6 Discussion

The work of Huber and Kim 1 has been extended to bin generation in a two-

dimensional space. Good agreement between simulation and analytical results

validates the application of the WEB Dynamics algorithm to two-dimensional

space. (Simulations with alternative bin systems yielded correct results but

with a higher level of statistical noise and long equilibration time.) The ap-

proach suggested here can be extended to cases with more than two dimensions

(e.g., arising from the parametrization of the shapes/states of a reactive site,

the rotational di�usion of the molecules, and the presence of reactive sites on

both reacting molecules).

In modeling of a reactive site of arbitrary shape, uxes in two principal

directions have to be taken into account: normal to the surface due to di�erence

in probabilities between the reactive site and distant part of space; tangential

ux due to the di�erence in probabilities on the reactive and non-reactive parts

of the surface. Therefore, close to a reactive site, bins should be organized so

that they are parallel to the surface; and close to a non-reactive surface, bin

boundaries should be perpendicular to the surface to insure tangential ux.
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Incorporation of rotational degrees of freedom dramatically increases the

simulation time in traditional Brownian Dynamics because particles now have

to explore con�guration states in many more dimensions. Spatial proximity

to a reactive site is insu�cient; the correct orientation is also required. The

essence of WEB Dynamics, combining of uninteresting states, overcomes this

problem. An e�cient bin structure could be built in the cases when the ro-

tational di�usion is signi�cant, provided that we take into account not only

spatial coordinates but orientation angles as well.

Moreover, we expect that the CPU time for a non-uniformly reactive case

will be essentially the same as for the corresponding uniformly reactive case.

We observed this in our simple example, when simulations in one-dimensional

space (uniformly reactive cylinder) and in two-dimensional space (partly reac-

tive cylinder) show the same times of equilibration, both on the order of char-

acteristic time Tc and only a function of geometrical parameters and di�usion

coe�cients. Huber et al. 1 compared the calculation time for one-dimensional

space byWEB Dynamics and traditional Brownian Dynamics, and showed that

WEB Dynamics is 14,000 times faster. For a multi-dimensional con�guration

space this di�erence in calculation times increases even further.

The computational demands for the present study were as follows. The

typical time for a simulation (total simulation time 10Tc) on a Pentium II 266

MHz PC is 1.5 hours. Even quicker estimates of the rate constant could be

obtained in 10-15 minutes by performing simulations of duration Tc. Clearly,

WEB Dynamics can be viewed as a desk-top tool for investigation of simple

to complex models of biomolecular reactions.

The considered case of pure di�usion gives the reaction rate constant of

the order 109 � 1010M�1 s�1 for Rp = 37:5�A, Rd = 12:5�A, L = 400�A, and

Dp = 5:3 � 10�3�A2=ps. This is in the range of typical values for interaction

of DNA and proteins 15. This is an encouraging result. Future directions can

focus on the incorporation of more realistic force models.
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