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In reconstruction of phylogenetic trees from molecular data, it has been pointed

out that multifurcate phylogenetic trees are di�cult to be correctly reconstructed

by the conventional methods like maximum likelihood method(ML). In order to

resolve this problem, we have been engaged in developing a new phylogenetic tree
reconstruction method, based on the minimum complexity principle widely used

in the inductive inference. Our method, which we call "minimum model-based

complexity(MBC) method", has been proved so far to be e�cient in estimating

multifurcate branching when the tree is described in the form of rooted one. In

this study, we make further investigations about the e�ciency of MBC method in

estimating the multifurcation in unrooted phylogenetic trees. To do so, we conduct

computer simulation in which the estimations by MBC method are compared with
those by ML, AIC and statistical test approach. The results show that MBC

method also provides good estimations even in the case of multifurcate unrooted

trees and suggest that it could be generally used for reconstruction of phylogenetic

tree having arbitrary multifurcations.

1 Introduction

In evolutionary studies, many methods have been proposed so far for recon-

struction of phylogenetic trees from molecular data. Among these methods,

maximum likelihood (ML) method 1 is considered as the most rigorous and

widely used. But, as it has been pointed out, even ML method still has some

problems for relevant reconstruction of evolutionary trees.

One of such problems lies in the estimation of appropriate tree topol-

ogy. Like other conventional methods, ML method always reconstructs fully

expanded binary phylogenetic trees. But the fully expanded binary tree, in

other words, the most complex tree is neither always true nor needed. We

think the degree of complexity of the molecular phylogenetic tree should corre-

spond with the information amount contained in the available molecular data.

In fact, multifurcate phylogenetic trees would be appropriate when we are not

certain about the detailed branching order due to the insu�cient amount of

information, or when phylogenetic branches are so simultaneous that we could

not determine from molecular data alone. In conventional methods, the rel-
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evant level of the complexity of phylogenetic trees has been never considered

seriously, so that extra-complex trees which do not correspond with the amount

of information in the data have been often reconstructed.

To resolve this problem, we have been engaged in developing a new method
2 3 which can deal with this multifurcation problem. Our method is based

on the inductive inference theory to extract the model having the relevant

complexity level corresponding with information contained in the data.

In our method, the complexity of the data is measured by what we call

"model-based complexity (MBC)", which is de�ned as the sum of the com-

plexity of the model and that of the data with respect to the model. In this

MBC method, the model-based complexities of molecular data for the various

candidate trees including multifurcations are compared, and the tree which

shows the minimum in its model-based complexity is selected to be true one.

In the previous paper 4, we have conducted the numerical experiments to

investigate the precision of the MBC method in estimating rooted phylogenetic

tree topologies in comparison with those of ML and AIC method. It was

found that MBC method provides better results in estimating the tree topology

having multifurcation comparing with ML and AIC method.

But, in conventional phylogenetic analyses, most of the trees are estimated

in the form of the unrooted tree with branch length described as the number of

base substitution per site. Therefore, we develop a new version of MBCmethod

for reconstruction of unrooted phylogenetic trees, which would enable us to

perform more straightforward comparison with other methods. We employ

the computer simulation to investigate the precision of the new version of our

method in estimating unrooted phylogenetic tree topologies, in comparison

with those of ML, AIC and the statistical test approach.

2 Method

2.1 Model-based Complexity

As is widely known, in the inductive inference, there would be many theories

which can explain the given data to the equal extent, so that we would have to

use a certain criterion to select the best one. In this context, so called "principle

of parsimony" or "minimum complexity principle " is often used, which states

that the theory which has the least complexity and nevertheless explains the

data well should be chosen as the �rst option for true one. There are several

ways to make this principle applicable to the real data 5 6 7 8. For example,

in Rissanen's MDL(Minimum Description Length) principle, the complexity

of data is measured by the code length of a statistical model M , l(M) plus
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code length of data with respect to the model M , l(D=M). Then minimization

procedure is taken by varying the model M within the assumed model family.

Wallace's MML(Minimum Message Length) is proposed also in the same line

of thought except that it considers average length of messages.

The complexity that we proposed is essentially same to the Rissanen or

other similar approaches, but, the detailed structure of complexity is investi-

gated in relation to the model inference in our formulation. Suppose we take

some family of model set M = fM�=� 2 Ig (I is some index set of �) which

is supposed to generate data sequence D = fx1; � � � ; xng. The model-based

complexity of data is de�ned as

KM (D) � inf
M�

fK(M�) +K(D=M�)g; (1)

where K(M�) is an appropriate measure of complexity de�ned on the model

M�, and K(D=M�) is the complexity of the residuals which the model M�

cannot explain.

In the model-based complexity, the �rst term of the equation (1) is formu-

lated in detail. In the ordinary modeling, the model space in which the best

model is to be explored has its own structure (composed of classes) exhibit-

ing various degree of complexity. To characterize this structure, we can use

some index parameters �(M) which de�ne the model classes. We call this kind

of parameters as compositional parameters of model space. The frequent

ways to introduce the measure of complexity into these model classes are: (1)

to assign(universal) prior probability p[�(M)] to the each element contained

in these classes and uses � log p[�(M)] as a measure of complexity for this

element, or (2) to assign the logarithm of the size (cardinality) of each j-th

class, log jM �j, as complexity measure of the elements contained in that class

if the cardinality is �nite. In the case that the cardinality is in�nite, we can

use "-entropy for suitably chosen "-net introduced into the model classes.

Other than the compositional parameters which specify the model class,

there are ordinary parameters which are estimated from data and de�ne a

particular model element in the model class. We call these ordinary parameters

as inferential parameters. There are several approaches to describe the

complexity of inferential parameters. Well-known is Akaike's AIC 9, the half

of which is given by � logL(xj�̂) + k; where k is the number of inferential

parameters which also describes its complexity, x is the data, and �̂ is ML

estimator of parameter �. L(xj�̂) is the maximum likelihood of data x with

ML estimator �̂.

The other approach to the inferential complexity is given by Rissanen.

In describing the total code length, he added code length for describing the
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precision of data to the ordinary code length of � logL(xj�̂) : the approxi-

mate term of this is k
2
log n, where n is the number of data samples. This

term is also obtained from the Bayesian viewpoint. In the Bayesian frame-

work, the posterior probability of the model given data p(�jx) is proportional
to p(xj�)�(�), where �(� is a prior probability of �. If we take its nega-

tive logarithm, then corresponding model complexity is given by � log�(�).

We can use non-informative prior of parameters by Je�rey for �(�), namely,
1
2
log det IF (�) where IF (�) is Fisher's information matrix. This term asymp-

totically approaches to k
2
log n + O(1), if n goes to in�nite. Thus we have

essentially equivalent de�nition of inferential complexity.

But, in real applications, not all the parameters are independent so that

more feasible de�nition is to introduce the e�ective dimension of the inferential

parameter space by applying eigenvector analysis to Fisher information matrix.

Hence, the empirical inferential complexity of data is given by

Kin(�) =
�� dim(�)

2
log n; (2)

where �� dim(�) is the e�ective number of empirically independent parameters.

Usually the e�ective number of the components is determined so that the sum

of the eigenvalues up to that component amounts to 95% or 90% of the toatal

sum of eigenvalues.

Hence, the total model-based complexity is composed of three terms which

are (1) compositional complexity of the model, Kc(m), (2)inferential complex-

ity of the model, Kin(m) and (3) empirical KL information between the data

and model, IKL(x=�;�). Then model-based complexity of data is speci�ed as

KM (D) = min
�;�

fKc(�) +Kin(�) + IKL(x=�; �)g: (3)

Thus, we have reached the concrete form of the de�nition of the general model-

based complexity. We can use this model-based complexity to extract the

model from data by �nding the model which minimize the model-based com-

plexity.

2.2 Complexity of Evolutionary Tree

In the molecular phylogenetic tree, the model space MT is decomposed into

two subspaces. One is tree model which is determined by tree topology Tp
and branch lengths b described either in time scale or average number of base

substitutions. The other is evolution model in which the base substitution

probability between two of four bases during time t is given by Markov tran-

sition matrix.
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First, we describe the tree model. In evolutionary tree, the class of tree

topology is determined by the number of leaves nl and that of internal nodes

v. From graph theory, we know that the number of branches nb is related with

nl and v as

nl + v = nb + 1: (4)

This relation holds for both unrooted and rooted trees. In constructing phy-

logenetic tree, the number of specie (leaves) nl is �xed, so that only v or

equivalently nb can be varied. We take v as the parameter de�ning the class of

tree topology: the compositional parameter of the tree. If v equals 1, we have

a star-shaped unrooted tree. With the increasing of the v, the tree becomes

more complex. In the case of unrooted tree, when v = nl � 2, we have fully

expanded binary tree. The complexity of natural number v is given by log� v

by Rissanen, where log� v = log v + log log v + log log log v + : : :

Even if the number of internal nodes v is determined, the tree is not unique.

Rissanen gives approximation of possible number of the rooted tree topologies

de�ned by v:

�
nl + v � 2

v

�
. In the case of unrooted trees, this approximation

is the number of branch times bigger because the root might be possibly located

inside any of branches, so that the number of topologies is obtained by dividing

it by the number of branches. If we assume each of these trees to be equally

probable, the resultant complexity of the tree topology is given by

Kc(v) = log� v + log
1

nb

�
ne + v � 2

v

�
: (5)

The complexity of branch lengths which are considered as inferential pa-

rameters is given by

Kin(b) =
�� dim(b)

2
log n; (6)

where b = (b1; :::bn) is the vector of branch lengths, n is the length of nucleotide

sequence, and �� dim(b) is the number of e�cient eigen vectors of Fisher's

information matrix IF (b).

Second, we describe the evolution model. To do it, we �rst model the

base substitution probability with time t, denoted by the transition matrix

fPij(t)g where i and j is one of the four nucleotides. The transition matrix in

time scale is derived from rate matrix for base substitution R, based on the

relation: P (t) = expfRtg. We use HKY model for rate matrix R in which

the di�erence of transition (�) and transversion(�) base substitution rate and

the frequency of each base(�i) are taken into account. The details would be

referred elsewhere 11. Then we convert time scale t to relative scale u (average
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number of base substitutions per site) to get fPij(u)g. The conversion equation
from time scale t to relative scale u is given by,

u(t) = �t
4X

k=1

�kRkk (7)

We use this transition matrix fPij(u)g to construct the whole likelihood of

the molecular sequences S1; S2; � � � ; Se when the tree topology is assumed to

be MT . The procedure to construct the likelihood function is same as the

Felsenstein 1. Taking the sum of the complexities of the each component of a

phylogenetic tree, we have the following total complexity of phylogenetic tree

to be minimized:

KMT
(S1; S2; :::; Snl) = min

v;b
fKc(v) +Kin(b) + IKL(D=v; t)g

= min
v;b

(
� logL(S1; S2; � � � ; Se=MT )

+

"
log� v + log

1

nb

�
nl + v � 2

v

�#

+
��dim(b)

2
log n

)
: (8)

Where logL(S1; S2; � � � ; SejMT ) is log likelihood function which approximates

empirical KL information of model with respect to sequence data.

2.3 Computer Simulation of Unrooted Tree

Model and Method

We take a bifurcate and a multifurcate tree with 4 OTUs (shown in Fig.1) as

the topology models to be compared. In the bifurcate tree, the branch lengths

of a and b are assumed to be equal to 0.2 in terms of average base substitution

number per site, and d = a + c = b + c. The branch e is assumed to be

connected with an outgroup species. Then the length of branch c is varied

from 0.0 to 0.1 with interval 0.01 to realize the bifurcate or multifurcate tree.

That is, if c = 0 then the topology becomes multifurcate tree. If c is relatively

small comparing with a and b then the topology will be nearly multifurcate,

whereas if c is statistically signi�cantly large then the tree becomes de�nitely

binary.
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Figure 1: Bifurcate and multifurcate tree models used for computer simulation

Since any point can be a starting point in the unrooted tree, we simulate

the evolution process from one of arbitrary root(ancestor sequence) to the each

leaf(4 nucleotide sequences) by calculating base transition matrix fPij(u)g. In
this simulation two groups data are generated: one group consists of 1000

simulated sequences whose lengths are assumed to be 1000bp, and another

group consists of 1000 simulated sequences whose lengths are assumed to be

3000bp. Other parameters such as transition rate � and transversion rate �

and frequency of the four bases �i are �xed.

Complexity Criterion Approach

The complexity criteria which are applied to this computer simulation are: (1)

negative logarithm of the maximum likelihood (ML) which describes model

�tness for the data by �logL, (2) Akaike information criterion (AIC) which de-

scribes both model �tness for the data and model dimensionality(complexity)

by �logL + k, and (3) the model-based complexity (MBC) which describes

both model �tness for the data and model complexity by �logL + Kc(v) +
��dim(b)

2
log n. Since all of three methods estimate the parameter values by

maximizing the same likelihood function, estimated parameter values are same

among them. But, as the additional complexity terms are di�erent, they make

di�erent selections for tree topology.

To clarify the global nature of estimation by these complexity criteria,

we investigate the change of the frequencies in selecting the bifurcate and
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multifurcate tree when the branch length c varies. When c = 0 or nearly 0,

both AIC and MBC select the multifurcate tree but AIC and MBC become

more inclined to select the bifurcate tree as the true value of branch length c

increases. Finally at some c value, the frequencies to select multifurcate and

bifurcate tree become almost equal. We denote this value of c by cAIC(0:5) or

cMBC(0:5) and call it equiprobable(EP) value.

Statistical Test Approach

The results by complexity criteria are evaluated by using the statistical test

approach. In this approach, we conduct Neyman-Pearson type hypothesis test

on whether the length of branch c is 0 or not, using a boundary value of

con�dence interval of estimated value ĉ.

Even if the true value of the branch c is 0, the estimated value ĉ would

distribute around 0. The boundary value of 95% con�dence interval of the

estimation is ordinarily considered as the threshold �c(0:05) to accept or reject

c = 0. The hypotheses in this case are: (1)Null hypothesis H0: the branch

length c is 0 and the corresponding node is multifurcate (degenerate). (2)Al-

ternative hypothesis HA: the branch length c is not 0 and the corresponding

node is bifurcate(fully expanded). With the hypotheses of H0 and HA, the

statistical test framework is as follows: (1)Null hypothesis H0 is rejected and

HA is accepted if the estimation ĉ exceeds the threshold �c(0:05), which means

the node is bifurcate. (2)Null hypothesis H0 is not rejected but accepted if

the estimation ĉ is below the threshold �c(0:05), which means that the node is

multifurcate.

The remained problem is to determine the probabilistic distribution of

ĉ when the true value of c is 0. In ordinary statistics, the distribution is

approximated at normal distribution with estimation error variance. In this

simulation, we apply ML method to the simulated data generated assuming

c = 0 and obtain the distribution of ĉ. The 95% threshold value �c(0:05) is

determined from this distribution. The decision rule for topology selection is

whether estimated value ĉ is greater than its threshold or not. This threshold

also describes the amount of uncertainty in estimated value ĉ. We can also

use the 99% boundary �c(0:01) as a threshold but in this case, the decision is

much more conservative to select multifurcate tree.

In comparison with the complexity criterion approaches, the statistical

test approach is conventionally more accepted though it needs the calculation

of test statistics (thresholds). On the contrary, the complexity criterion ap-

proaches are relatively easy to use because what we need is to calculate the

magnitudes of the criteria in two models to be compared. Since the EP values
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in the complexity criterion approach behave the same role as the thresholds

in statistical test, we can compare the statistical threshold �c(0:05) with EP

values of AIC(cAIC(0:5)) and MBC(cMBC(0:5)) to clarify the features of the

estimation using these complexity criteria in selecting the topology.

3 Results
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Figure 2: Change of the selection ratio among two topologies by various complexity criteria

when c is varied. Ordinate denotes the frequency that bifurcate tree is selected among

simulated 1000 samples. Abscissa denotes the true c value used in generation of the data.

Dotted line indicates ML method, whereas thin line and thick line indicate AIC and MBC

method, respectively.

The results of the complexity criterion approach are shown in �gure 2. We

can see that ML method almost always selects the bifurcate tree with very

few exceptions in which the estimations exactly bring ĉ = 0 within numerical

truncation. Even if the true c = 0 (exactly multifurcate), the ML criterion

selects bifurcation about 50% of the cases. On the contrary, AIC and MBC

method showmore natural tendencies which �t our intuition. Therefore, in this

section we only investigate the features of AIC and MBC method. In the case

that the sequence lengths are assumed to be 1000bp, the cAIC(0:5) is 0.025.

It means that AIC considers the tree as multifurcate until the true c value is

varied up to 0.025 (0 � c � 0:025). But, MBC method is more conservative in

selection of bifurcate tree, because the topology is not considered as bifurcate

until the c value is varied up to 0.056.
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Figure 3: Ogive curve of estimation value ĉ when c = 0. Ordinate denotes the cumulative

probability of ĉ and abscissa denotes ĉ.

On the other hand, in the statistical test approach, the 95% threshold

�c(0:05) in the case of 1000bp is 0.022 (Fig.3). This means that even if true c

value equals to 0, ĉ varies within 95% interval of estimation (0 � c � 0:022).

This threshold 0.022 corresponds well with AIC EP-value 0.025, whereas MBC

EP-value 0.056 exceeds even 99% threshold (�c(0:01) = 0:0303). Therefore, if

we consider the statistical approach is reliable, AIC method appears to be

relatively good criterion for selection of multifurcate topology and MBC seems

to be biased to multifurcate topology.

In the case that the sequence length is assumed to be 3000bp, cAIC(0:5) is

0.0135 and cMBC(0:5) is 0.0299. On the other hand, the threshold of statistical

test is 0.0124 for 95% con�dence and 0.0174 for 99% con�dence interval. Hence,

again, AIC criterion corresponds well with the test threshold and the MBC

criterion has a tendency to select multifurcate topology.

4 Discussion

How we interpret above results. If we think the statistical test approach is

appropriate, AIC method seems to provide fairly good selection between the

bifurcate and multifurcate tree. But in this simulation, exactly same evolution

model fPij(u)g is used in generation of the data and estimation of branch

lengths. In real situations, we should also estimate the evolution model (base

substitution model) from the data, which certainly produces estimation errors.

If we take this e�ect into account in determining the con�dence interval of the

estimation. the threshold values of statistical test becomes larger. Here we do
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not have the exact value when this uncertainty of the evolutionary model is

considered. If this e�ect is as same as branch length estimation error, we havep
2 times wider con�dence interval. Then we would say that AIC method,

needless to say ML method, overestimates the complexity of tree topology

to prefer the bifurcate tree. On the contrary, the underestimation in MBC

method is not fatal but much more appropriate when the unpredictable sources

of estimation variation are considered. Though MBC still underestimates the

complexity of tree to prefer the multifurcate tree, but this tendency will be

improved when the number of data is increased. We are now engaged in

incorporating other sources of estimation variation into the simulation such

as the blurring of the transition matrix to get more actual estimation of tree

topology.

Alternative applications of the minimum complexity principle to the re-

construction of phylogenetic tree have been studied by Cheeseman 12 and Al-

lison 13. Although these studies are same as our study in using the minimum

complexity principle. they are di�erent from ours in that they apply the min-

imum complexity criterion directly to the base by base change of nucleotides

along the tree, whereas our method applied the complexity measure along the

Felsenstein's way of likelihood modeling.

The results in this study are roughly corresponding to those of rooted tree

in our previous results. Thus we can conclude the MBC method provides fairy

robust topology selection as compared with ML or AIC method in both rooted

and unrooted trees.

5 Conclusion

In this study, by using computer simulation, the e�ciency of model-based

complexity method in estimation of unrooted phylogenetic tree is investigated

in comparison with conventional tree reconstruction methods like maximum

likelihood method and Akaike's information criterion methods. The results

suggest that, if we consider the real situation in which the evolution model is

often inexact, MBC method would provide a better criterion for tree topology

selection than the above two conventional methods.
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